Информатика
Проектирование
Геометрия
Алгебра
Курсовой
Графика
Электротехника
Задачи

Сопромат

Лабораторные
Методика
Физика
Чертежи
Энергетика
Математика
Реактор

Тема 5. Кривые второго порядка.

  (рис 1)

 


М (х,у) – произвольная точка эллипса, (х,у) – текущие координаты этой точки. Все точки эллипса удовлетворяют условию: F1M + F2M=2a.

а,в называются полуосями эллипса, а – большая полуось, в – малая полуось. F1 и F2 – фокусы эллипса находятся на оси ох на расстоянии С= 2 – в2) от центра О. Отношение с/а = Е называется эксцентриситетом эллипса.

Пример 1. 1)Написать уравнение эллипса, если а=4, в=3; 2)Найти координаты фокусов; 3)Найти Е.

Ответ: 1) х2/16 + у2/9=1; 2) С= = , F1 (- , 0); F2 ( , 0); 3)Е = с/а = /4 < 1.

 (Рис 2). Она пересекает ось ох в точках А1( -а, 0) и А2(+а, 0) – вершинах гиперболы и не пересекает ось оу. Параметр а называется вещественной полуосью, в – мнимой полуосью, С=(а2 +в2) - расстояние от фокуса до центра симметрии О. Отношение с/а=Е называется эксцентриситетом гиперболы. Прямые у= ±в/а х называются асимптотами гиперболы.


М(х,у) – произвольные точки гиперболы, (х,у) – текущие координаты произвольной точки. Все точки гиперболы удовлетворяют условию

 │F1M-F2M│=2a.

Пример 2. Дана гипербола х²-4у²=16. 1)Написать каноническое уравнение гиперболы; 2)Найти вещественную и мнимую полуоси; 3) Найти асимптоты гиперболы; 4) Вычислить эксцентриситет Е.

Ответ: 1)х²/16 - у²/4 = 1; 2) а= = 4; в= = 2. 3) у = ±(в/а) х или у = ±(2/4)х или у = ±(1/2)х; 4) с= (а² + в²) = = = 2,

 Е=с/а=(2)/4 = ()/2 ;

Е=()/2 >1.

Парабола. Параболой называется геометрическое место точек, одинаково удаленных от данной точки (фокуса) и данной прямой (директрисы).

Каноническое уравнение параболы имеет два вида:

у²= 2рх – парабола симметрична относительно ох (рис.3)

х²= 2ру – парабола симметрична относительно оу (рис.4)

 


РИС.3


М (х,у) – произвольная точка парабола,

(х,у) – текущие координаты произвольной точки,

х = -р/2 – уравнение директрисы.

FM = d, где d – расстояние от точки М до директрисы.

В обоих случаях вершина параболы находится на оси симметрии в начале координат 0.

Парабола у² = 2рх имеет фокус F (р/2) и директрису х = - р/2

Парабола х = 2ру имеет фокус F (р/2) и директрису у = - р/2

Пример 3. Построить параболы заданные уравнениями:

у² = 4х; 2) у² = -4х; 3) х² =4у; 4) х² =-4у; а так же их фокусы и директрисы и написать уравнения директрис.

 Х2 = 4у, р = 2, F (0, 1)

 У = -1 – уравнение директрисы.

Окружность. Уравнение окружности с центром в точке А (а,в) и радиусом R; (рис.6)


 Пример 4. 1) Написать уравнение окружности с центром в точке А ( -1, 2), R = 2. 2) Построить ее. 3) Лежит ли точка О (0, 0) на окружности?

Ответ: 1) (х + 1)2 + (у – 2)2 = 4, если раскроем скобки, то уравнение примет вид:

х2 + у2 + 2х – 4у + 1 = 0

О (0,0) не лежит на окружности, т. к. координаты этой точки не удовлетворяют уравнению: 0+0+0 + 0+1 ≠ 0.


 Тема 6. Элементы линейной алгебры. Определители, их свойства. Способы вычисления определителей. Решения систем линейных алгебраичных уравнений по формулам Крамера.

Определителем второго порядка называется число, обозначаемое символом  и определяемое равенством  = а11а22-а12а21.

Например, Вычислить определитель  = 3*6 – (-2)*4 = 18 + 8 = =26

Числа, составляющие определитель называются его элементами. Определитель второго порядка имеет две строки и два столбца.

Определитель третьего порядка называется число, обозначаемое символом  и определяемое равенством  = а11*а22*а33 + а12*а23*а31 + а13*а32*а21 – (а13*а22*а31+а32*а23 *а11+а33*а12*а21).

Например,  = 2*(-2)*3+3*1*1+4*2*5 – (1*(-2)*4 + 2*1*2 + 3*3*5) = -12+3+40 – (-8+4+45) = 31-41= - 10

Например,  =  

Алгебраическое дополнение. Минор.

Минором Мij элемента аij называется определитель, полученный из данного путем вычеркивания i строки j столбца, т.е. той строки и того столбца, на пересечении которых стоит элемент аij. Минор Мij есть определитель порядка на единицу ниже исходного.

Например, в определителе,  Минором к элементу 4 является М13= = = 10+2=12.

Алгебраическое дополнение Аij есть минор Мij , умноженный на (-1)i+j, т.е.

Аij = (-1)i+j Mij

В приведенном примере А13= (-1)1+3 М13 = (-1)4 *  = 10+2=12.

В данном случае Минор и алгебраическое дополнение к элементу 4 совпали.

Продолжим изложение свойств определителей.

Величина определителя равна сумме произведений элементов любой строки (столбца) на соответствующее алгебраическое дополнение этих элементов.

Например,  = а11*А11 +а12*А12+а13*А13; правая часть равенства называется разложением определителя по элементам первой строки.

Сумма произведений элементов строки на алгебраические дополнения к элементам другой строки равна нулю.

Например, а11 А21+а12А22+а13А23=0.

Перечисленные свойства определителей справедливы для определителей любого порядка.

Понятие комплексного числа имеет геометрическое истолкование. Множество комплексных чисел является расширением множества действительных чисел за счет включения множества мнимых чисел. Комплексные числа включают в себя все множества чисел, которые изучались ранее. Так натуральные, целые, рациональные, иррациональные, действительные числа являются, вообще говоря, частными случаями комплексных чисел.

Курс электрических цепей