Теория функции комплексного переменного Теорема Коши Ряд Тейлора Решение задач типового задания из учебника Кузнецова Вычислить пределы Изменить порядок интегрирования Найти объем тела числовые ряды Найти неопределенные интегралы

 

Задача 5. Исследовать поведение функций в окрестностях заданных точек с помощью производных высших порядков.



Т.к. то в точке функция имеет максимум.

Задача 6. Найти асимптоты и построить графики функций.

1) .

2) Функция ни четная, ни нечетная.

 3)

а) ,

-вертикальная асимптота.

б)

.

Следовательно, - наклонная асимптота.

4)

не существует при

5) Найдем точки пересечения с осями:

При .

При .

Задача 7. Провести полное исследование функций и построить их график.

1) .

2) Функция ни четная, ни нечетная.

 3)

а) ,

-вертикальная асимптота.

б)

.

Следовательно, - наклонная асимптота.

4)

 при  

не существует при

-точка максимума функции.

-точка минимума функции.

5)

не существует при

6) Найдем точки пересечения с осями:

При .

При квадратное уравнение не имеет корней, следовательно график не пересекается с осью

Задача 8. Провести полное исследование функций и построить их графики.

1) .

2) Функция ни четная, ни нечетная.

 3)

а) ,

-вертикальная асимптота.

б)

.

Следовательно, - горизонтальная асимптота.

4)

 при  ,

не существует при

-точка минимума функции.

5)

не существует при

6) Найдем точки пересечения с осями:

При .

При квадратное уравнение не имеет корней, следовательно график не пересекается с осью

Понятие комплексного числа имеет геометрическое истолкование. Множество комплексных чисел является расширением множества действительных чисел за счет включения множества мнимых чисел. Комплексные числа включают в себя все множества чисел, которые изучались ранее. Так натуральные, целые, рациональные, иррациональные, действительные числа являются, вообще говоря, частными случаями комплексных чисел.
Найти общий интеграл дифференциального уравнения