Часы-браслет Pandora    + серьги Dior

Часы-браслет Pandora + серьги Dior

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Электротехника и электроника Комплексный метод расчета цепей Биполярные транзисторы Индикаторные приборы Мультивибраторы Электронные ключи Однофазные выпрямители Расчёты в трёхфазных цепях Микропроцессор

Операционные усилители

С развитием интегральной технологии производства наиболее распространенным элементом для построения электронных устройств стал операционный усилитель. Он представляет собой высококачественный усилитель постоянного тока с дифференциальным входом, обладающий высоким коэффициентом усиления, большим входным и малым выходным сопротивлениями.

На принципиальных схемах в самом общем виде операционный усилитель обычно изображают в виде прямоугольника с двумя входными и одним выходным выводами (рис. 14.5). Один из входов усилителя, напряжение на котором усиливается с тем же знаком, называется неинвертирующим и обозначается «+». Напряжение на другом входе – инвертирующем («–») – усиливается с изменением знака на обратный. Коэффициент усиления в схеме с разомкнутой обратной связью одинаков для обоих входов операционного усилителя, причем во всем рабочем температурном диапазоне. Этого достигают выполнением всех элементов усилителя, в том числе и входных транзисторов, на одной кремниевой пластине.

Основные параметры схем, выполняемых на операционном усилителе (ОУ), удобно рассматривать, считая его идеальным, с параметрами:

1) коэффициент усиления  в схеме с разомкнутой обратной связью бесконечно большой;

2) напряжение на выходе равно нулю при нулевой разности входных напряжений;

3) входное сопротивление бесконечно большое;

4) выходное сопротивление равно нулю;

5) полоса пропускания частот бесконечна (усилитель не вносит задержки).

  Схема операционного усилителя, изображенная на рис. 14.6 называется инвертирующей схемой ОУ. Характерной особенностью ее является то, что неинвертирующий вход заземлен, а инвертирующий вход связан с выходом через сопротивление обратной связи  Для инвертирующего включения ОУ характерны перемена знака входного сигнала, а также зависимость коэффициента усиления (коэффициента передачи) только от параметров цепи обратной связи. При достаточно большом значении коэффициента усиления, даже в случае его изменения от экземпляра к экземпляру ОУ или от температуры, параметры усилителя практически не меняются. Такая схема, называемая инвертирующим повторителем входного сигнала, используется как промежуточное звено при связи источника сигнала, имеющего относительно большое внутреннее сопротивление (но меньшее, чем входное сопротивление ОУ), с низкоомным приемником.

Определим с учетом знака выходного напряжения  значение входного тока

.  (14.3)

Из этого следует, что напряжение на инвертирующем входе для данной схемы стремится к нулю. Поэтому здесь инвертирующий вход может рассматриваться как точка «кажущейся» земли.

На основе инвертирующего усилителя выполняют сумматоры, у которых с инвертирующим входом связано несколько источников сигналов со своими входными сопротивлениями (рис. 14.7).

Поскольку инвертирующий вход, называемый в данном случае «суммирующей точкой», сохраняет потенциал земли, входные токи каждого из источников не зависят друг от друга. Через элемент обратной связи  протекает сумма этих токов.

При малом переменном напряжении входного сигнала, соизмеримом с падением напряжения на открытом диоде, для его выпрямления могут применяться схемы на основе ОУ. В них практически исключается влияние падения напряжения на диоде. На рис. 14.8 представлена схема однополупериодного выпрямителя, где диод VD1 включен в цепь обратной связи.

Для схемы, показанной на рис. 14.9 а с учетом того, что потенциал точки суммирования токов за счет обратной связи совпадает с потенциалом земли, имеют место следующие зависимости

;

.  (14.4)

Таким образом, посредством этой схемы осуществляется интегрирование входного сигнала с изменением знака. Такой интегратор может применяться, для сглаживания выпрямленного напряжения. Например, подключив в схеме (рис. 14.8) параллельно резистору  конденсатор, получим выпрямитель.

Схему дифференциатора, выполняющего операцию, обратную интегрированию, т.е. дифференцирование, можно получить из предыдущей схемы, поменяв местами конденсатор и резистор (рис. 14.9 б). Для этой схемы характерны следующие

соотношения

  . (14.5)

В схеме неинвертирующего усилителя (рис. 14.10) источник входного сигнала с внутренним сопротивлением  связан с неинвертирующим входом, а инвертирующий заземлен через резистор  и имеет обратную связь через резистор .

Этот усилитель в определенном масштабе  воспроизводит на выходе входное напряжение. Достоинством его является большое входное и малое внутреннее выходное сопротивления. При = 0 усилитель превращается в повторитель входного напряжения.

Для сравнения двух сигналов используют схемы ОУ в режиме компаратора. В этих схемах для получения максимальной точности, определяемой чувствительностью схемы, петля обратной связи обычно не замыкается.

На рис. 14.11 показан компаратор, применяемый для сравнения разнополярных входных сигналов – сигнала  и опорного . Если одно напряжение

 превышает другое, то выходная часть ОУ за счет большого коэффициента усиления переходит из одного состояния насыщения в другое. Таким образом, компаратор служит для преобразования разности аналоговых входных сигналов в дискретный выходной.

Реальный ОУ отличается от рассмотренного ранее идеального наличием входных токов и выходного сопротивления, несбалансированностью обоих плеч входного дифференциального усилителя и конечным значением коэффициента усиления . Поэтому выбор параметров элементов внешних связей ОУ с другими узлами схемы связан с его электрическими параметрами. Для этого в справочной литературе приводится около 20 параметров.

14.2. Электронные генераторы

Электронным генератором называют устройство, создающее электрические колебания определенной частоты и формы и использующее для этого  энергию источника постоянного тока (напряжения).

По принципу действия генераторы бывают с внешним и внутренним возбуждением. Генераторы с внутренним возбуждением (автогенераторы) возбуждаются самостоятельно (без внешнего источника). Основными характеристиками генераторов являются форма, частота и амплитуда создаваемых колебаний.

По форме колебаний генераторы подразделяются на генераторы синусоидальных колебаний и генераторы несинусоидальных (релаксационных) колебаний.

По частоте колебаний генераторы подразделяются на низкочастотные (от долей герц до 100 кГц), высокочастотные (100 кГц … 10 мГц) и сверхвысокочастотные (более 10 мГц).

Важными характеристиками являются мощность выходного сигнала, стабильность частоты и коэффициент полезного действия.

14.2.1. Генераторы синусоидальных колебаний

Любой генератор состоит из усилителя и цепи положительной обратной связи. Структурная схема генератора представлена на рис. 14.12.

Рис. 14.12

За счет влияния цепи обратной связи на делитель на его выходе появляется напряжение даже при отсутствии напряжения на входе, т.е. происходит самовозбуждение делителя и превращение его в генератор.

Чтобы на выходе генератора получить периодические колебания заданной частоты, в цепь его обратной связи необходимо включить колебательный контур, настроенный на данную частоту. В зависимости от состава элементов контура автогенераторы бывают LC и RC-типов (рис. 14.13).

а)  б)

Рис. 14.13

Схема LC -генератора (рис.14.13 а) объединяет однокаскадный делитель на транзисторе VT и колебательный контур LC, включенный в цепь положительной обратной связи генератора. Подбором L и C устанавливают требуемую частоту колебаний .

После включения источника питания  в контуре LC возникают колебания и переменный ток базы  усиливается транзистором. Протекающий через катушку ток коллектора  создает на ней падение напряжения, которое в противофазе (вследствие встречного включения катушек  и ) за счет индуктивной связи между катушками подается в колебательный контур. Амплитуда колебаний постепенно возрастает до определенного значения (насыщения транзистора) и в дальнейшем не изменяется.

Недостатком рассмотренной схемы генератора является большое влияние температуры на амплитуду и частоту вырабатываемых напряжений. Поэтому часто эти схемы дополняют элементами, стабилизирующими параметры генерируемых напряжений.

Для получения периодических напряжений низкой частоты (от долей герца до нескольких килогерц) целесообразно в генераторе вместо LC контура использовать RC-цепь (рис. 14.13 б).

Эта замена упрощает конструкцию и снижает массу генератора. В отличие от LC-генератора в этой схеме положительная обратная связь образована частотно-зависимой RC-цепью. Если выходное напряжение генератора, снимаемое с коллектора транзистора, подать непосредственно на вход усилителя (на базу транзистора), то создается отрицательная обратная связь.

Чтобы получить одинаковые фазы выходного и входного напряжений, необходимо напряжение на RC-цепи сдвинуть на 180°. Это осуществляют тремя RC-элементами, каждый из которых позволяет получить фазовый сдвиг на 60°. Несмотря на усложнение схемы генератора, она проста в реализации, особенно для низких частот, так как не требует индуктивных катушек, имеющих большие габариты и массу.

В настоящее время центральное производство и распределение электрической энергии осуществляется в основном на переменном токе. Цепи с изменяющимися — переменными — токами по сравнению с цепями постоянного тока имеют ряд особенностей. Переменные токи и напряжения вызывают переменные электрические и магнитные поля. В результате изменения этих полей в цепях возникают явления самоиндукции и взаимной индукции, которые оказывают самое существенное влияние на процессы, протекающие в цепях, усложняя их анализ.
Расчет электротехнических цепей Лабораторные работы и решение задач