Часы-браслет Pandora    + серьги Dior

Часы-браслет Pandora + серьги Dior

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Электротехника и электроника Комплексный метод расчета цепей Биполярные транзисторы Индикаторные приборы Мультивибраторы Электронные ключи Однофазные выпрямители Расчёты в трёхфазных цепях Микропроцессор

ЭЛЕКТРИЧЕСКИЕ МАШИНЫ ПЕРЕМЕННОГО ТОКА

 Асинхронная машина – это бесколлекторная машина переменного тока, у которой при работе возбуждается вращающееся магнитное поле, но ротор вращается асинхронно, т.е. с угловой скоростью, отличной от угловой скорости поля.

 Асинхронные двигатели являются самыми распространенными из всех двигателей. Их преимущества состоят в простоте устройства, большой надежности и сравнительно низкой стоимости.

 Широко применяются трехфазные асинхронные двигатели, предложенные М.О. Доливо-Добровольским в 1888 г. Они выполняются мощностью от долей ватта до тысяч киловатт, с частотой вращения от 500 до 3000 об/мин и напряжением до 10 кВ. Однофазные асинхронные двигатели используют для привода бытовых приборов, электроинструмента, в схемах автоматики. Они питаются от однофазной цепи и имеют мощность, как правило, не выше 0,5 кВт.

  Асинхронные машины могут работать в режиме генератора. Но как источники электрической энергии они почти не применяются, так как не имеют собственного источника возбуждения магнитного потока и по своим показателям уступают синхронным генераторам.

  Асинхронные машины применяют в качестве регуляторов напряжения, фазорегуляторов, преобразователей частоты и др.

 Недостатками асинхронных машин являются сложность и неэкономичность регулирования их эксплуатационных характеристик.

Устройство асинхронного двигателя

 Асинхронный двигатель состоит из статора, ротора и подшипниковых щитов (рис. 11.1). Статор – неподвижная часть двигателя – имеет цилиндрическую форму. Он состоит из корпуса 1, сердечника 2 и обмотки 3. Корпус литой стальной или чугунный. Магнитопровод статора собирается из тонких листов электротехнической стали. На внутренней поверхности он имеет пазы, в которые укладывается обмотка статора. Ротор асинхронного двигателя – вращающаяся часть – состоит из стального вала 4, магнитопровода 5, набранного из листов электротехнической стали с выштампованными пазами. Обмотка ротора бывает короткозамкнутой или фазной. Короткозамкнутая обмотка выполняется из алюминиевых или медных стержней, замкнутых с обоих торцов ротора накоротко. Фазный ротор имеет трехфазную обмотку, соединенную в звезду. Выводы обмотки подсоединены к кольцам на валу и с помощью щеток подсоединяются к реостату или другому устройству. Вращающийся ротор размещают на общем валу cо статором. Вал вращается в подшипниковых щитах. Соединение обмотки статора осуществляется в коробке, в которую выведены начала фаз С1, С2, С3 и концы фаз С4, С5, С6. На рис. 11.2 показаны схемы расположения этих выводов (рис. 11.2 а) и способы соединения их между собой при соединении фазных обмоток звездой (рис. 11.2 б) и треугольником (рис. 11.2 в).

Рис. 11.1

 Если в паспорте двигателя указаны два напряжения, например, 380/220, то большему напряжению соответствует соединение звездой, более меньшему – треугольником. В обоих случаях напряжение на фазе двигателя равно 220 В.

  а) б) в)

Рис. 11.2

 11.3. Получение вращающегося магнитного поля

  Основой действия асинхронного двигателя является вращающееся магнитное поле. Принцип получения вращающегося магнитного поля заключается в том, что если по системе проводников, распределенных в пространстве по окружности, протекают токи, сдвинутые по фазе, то в пространстве создается вращающееся поле.

 Рассмотрим получение вращающегося поля в трехфазном двигателе. На рис. 11.3 показаны три фазные обмотки A – X, B – Y, C – Z, каждая в виде одного витка. От источника питания к обмоткам подводится трехфазная система токов

;;. (11.1)

 Положительные направления токов приняты от начала обмотки к концу, а соответствующие им пульсирующие магнитные потоки образуют трехфазную звезду .

Рассмотрим результирующий магнитный поток для нескольких моментов времени.

  В начальный момент времени при  = 0

  а) б)

Рис. 11.3

 Им соответствуют магнитные потоки

,

где  – максимальное значение потока фазы.

 Результирующий магнитный поток в 1,5 раза больше фазного и направлен по вертикали вниз (рис. 11.4 а).

 В момент времени  токи в обмотках

.

  Этим токам соответствуют магнитные потоки

.

На рис. 11.4 б показаны векторы результирующего магнитного потока и его составляющие. Направление потока отличается от предыдущего на 90°, а его значение не изменилось

.

  В момент времени , соответствующий , токи в обмотках:

  Этим токам соответствуют магнитные потоки

  .

На рис. 11.4 в показаны результирующий магнитный поток и его составляющие. По сравнению с начальным моментом времени результирующий магнитный поток изменил направление на 180°, а его значение осталось неизменным и равным

..

  Таким образом, трехфазная обмотка, питаемая сдвинутыми на 120° токами, создает вращающееся магнитное поле. Результирующий поток остается неизменным и равным 1,5 от максимального потока фазы. Направление этого потока всегда совпадает с направлением магнитного потока той фазы, ток в которой в данный момент максимален. Поэтому для изменения направления вращения необходимо поменять местами любые две фазы.

 Рассмотренные примеры относятся к двухполюсному исполнению обмотки () при частоте вращения поля . В общем случае частота вращения поля

,  (11.2)

где  – число пар полюсов машины;  – частота тока статора.

Принцип действия асинхронной машины и режимы ее работы

 Трехфазная обмотка статора создает магнитное поле, вращающееся со скоростью

.

  Электромагнитное взаимодействие между статором и ротором возникает только при неравенстве скорости поля статора и скорости вращения ротора.

Отношение

  (11.3)

Рис. 11.5

 

или

  (11.4)

называется скольжением асинхронной машины.

 В зависимости от соотношения  и  различают три режима работы: в режиме двигателя; в режиме генератора; в режиме электромагнитного тормоза.

 Работа в режиме двигателя. На рис. 11.5 показано магнитное поле статора, вращающееся по часовой стрелке. При  линии поля статора перемещаются относительно ротора также по часовой стрелке со скоростью . Согласно правилу правой руки ЭДС в проводниках ротора под северным полюсом направлены к нам, в проводниках под южным полюсом – от нас. То же направление имеют и активные составляющие токов в проводниках. Электромагнитные силы взаимодействия магнитных полей статора и ротора создают вращающий момент в направлении вращения поля статора. Скорость , с которой вращается двигатель, зависит от его нагрузки. При холостом ходе скорость  становится почти равной , так как при  = 0 ЭДС и токи в роторе равны нулю и электромагнитное взаимодействие исчезает. Таким образом, асинхронная машина работает в режиме двигателя в пределах от  = 0 до , т.е. при скольжении от  +1 до  0. При этом электрическая энергия, подводимая к статору из сети, преобразовывается в механическую энергию на валу.

 Работа в режиме генератора. Предположим, что подключенный к сети статор создает вращающееся магнитное поле, а ротор приводится во вращение в том же направлении со скоростью . В этом случае скольжение будет отрицательным, а ЭДС и токи ротора изменяют направление по сравнению с работой в режиме двигателя. Момент на валу становится тормозящим по отношению к вращающему моменту первичного двигателя. Асинхронная машина работает генератором. Механическая энергия, подведенная к валу, преобразовывается в электрическую энергию и отдается в сеть. Таким образом, асинхронная машина может работать в режиме генератора параллельно с сетью в пределах от  до , т.е. при скольжении от  до .

 Работа в режиме электромагнитного тормоза. Допустим, что ротор приводится во вращение против направления вращения магнитного потока статора. В этом случае к асинхронной машине подводится энергия с двух сторон – электрическая из сети и механическая от первичного двигателя. Такой режим работы называется режимом электромагнитного тормоза. Он возникает при скольжении от  до . Примером практического применения режима электромагнитного тормоза является опускание груза в подъемно-транспортных устройствах.

  11.5. Электродвижущие силы в обмотках статора и ротора

 Вращающийся магнитный поток в воздушном зазоре пересекает проводники обмоток статора и ротора и индуктирует в них синусоидальные ЭДС. ЭДС одного витка

,

где  – максимальное значение вращающегося магнитного потока.

  Обмотка статора имеет  витков, уложенных в пазах. В один и тот же момент времени мгновенные значения ЭДС, наведенные в витках, получаются сдвинутыми по фазе. Суммарная ЭДС равна геометрической сумме ЭДС, которая меньше алгебраической суммы. Эта разность учитывается коэффициентом распределения. Кроме того, в электрических машинах переменного тока применяют укороченные шаги обмотки и профилирование пазов с целью получения синусоидального распределения потока. Эти меры также уменьшают ЭДС, что учитывается соответствующими коэффициентами укорочения и скоса пазов. Произведение всех трех коэффициентов называется обмоточным коэффициентом, числовое значение которого = 0,92…0,98. Амплитуда ЭДС фазной обмотки статора

,

а ее действующее значение с учетом  можно записать в виде

.  (11.5)

 Сравнение (11.5) с (7.3) показывает, что ЭДС обмотки статора зависит от тех же параметров, что и ЭДС первичной обмотки трансформатора, если принять  = 1.

 Частота этой ЭДС

. (11.6)

 ЭДС, наведенная в обмотке ротора, имеет частоту

.  (11.7)

 В режиме двигателя частота ЭДС ротора при пуске равна частоте напряжения сети, а в рабочем режиме составляет несколько герц. Так, при  = 0,04 частота ЭДС в роторе = 50·0,04 = 2 Гц.

 ЭДС обмотки вращающегося ротора

,

где  – обмоточный коэффициент для обмотки ротора,   – число витков фазы обмотки ротора.

 В короткозамкнутой обмотке в пазу находится один проводник, который представляет собой отдельную фазу. Поэтому  = 0,5, а = 1.

 У двигателя с фазным ротором

 С учетом (11.7) ЭДС вращающегося ротора можно представить в виде

,  (11.8)

ЭДС неподвижного ротора при  = 1

.  (11.9)

 Следовательно, ЭДС вращающегося ротора (11.8) можно выразить через ЭДС неподвижного ротора

,  (11.10)

т.е. ЭДС обмотки ротора прямо пропорциональна скольжению или обратно пропорциональна частоте вращения ротора. Максимальное значение ЭДС ротора в режиме двигателя соответствует скольжению  = 1, т.е. при неподвижном роторе.

 Из сравнения (11.5) и (11.9) следует, что асинхронная машина подобна трансформатору с коэффициентом трансформации по ЭДС

.  (11.11)

 По аналогии с трансформатором введем понятие ЭДС заторможенного ротора, приведенной к статору

.  (11.12)

 Кроме рассмотренных ЭДС обмоток статора и ротора, обусловленных результирующим (основным) магнитным потоком, в обмотках индуктируются ЭДС от потоков рассеяния:

в обмотках статора

,  (11.13)

в обмотках ротора

.  (11.14)

 Составляющие напряжения сети, соответствующие ЭДС самоиндукции, представляют в виде

,  (11.15)

где  – индуктивное сопротивление от потоков рассеяния одной фазы статорной обмотки, и в виде

  (11.16)

где  – индуктивное сопротивление от потоков рассеяния одной фазы обмотки вращающегося ротора.

 11.6. Ток ротора

 Под действием ЭДС ротора (11.10) в его обмотке протекает ток

.  (11.17)

 С учетом равенств  и  получаем

.  (11.18)

 Ток по (11.18) равен току (11.17), но отличается тем, что имеет частоту, равную частоте неподвижного ротора, т.е. частоте напряжения сети. Угол сдвига по фазе между ЭДС и током остается неизменным

.

Переменный ток долгое время не находил практического применения. Это было связано с тем, что первые генераторы электрической энергии вырабатывали постоянный ток, который вполне удовлетворял технологическим процессам электрохимии, а двигатели постоянного тока обладают хорошими регулировочными характеристиками. Однако по мере развития производства постоянный ток все менее стал удовлетворять возрастающим требованиям экономичного электроснабжения.
Расчет электротехнических цепей Лабораторные работы и решение задач