Часы-браслет Pandora    + серьги Dior

Часы-браслет Pandora + серьги Dior

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Расчет электротехнических цепей Законы Ома и Кирхгофа Резонансные явления Понятие трехфазной системы Двигатели постоянного тока Трехфазные трансформаторы Исследование выпрямителя генератора Измерение энергии

Неразветвленная цепь синусоидального тока

 Рассмотрим цепь из трех последовательных токоприемников (рис. 2.12 а): первые два имеют активно-индуктивный характер, третий является последовательным соединением резистора и конденсатора. Проведем анализ цепи по векторной диаграмме. Произвольно строим вектор тока, который является базовым для всех векторов диаграммы. В соответствии со вторым законом Кирхгофа

,

где  .

Рис. 2.12

Строим составляющие векторы, модули которых определяются по закону Ома. Суммарный вектор строим по правилу многоугольника. Векторы напряжений на активных сопротивлениях цепи совпадают по фазе с вектором тока, векторы  опережают вектор тока на 90°, а вектор  отстает от него на угол 90° (рис. 2.12 б). Действующее значение напряжения источника (модуль вектора ) по диаграмме находится из треугольника напряжений ОАВ

. (2.27)

В формуле (2.27)  – активное сопротивление цепи, равное арифметической сумме сопротивлений последовательно включенных резисторов. В общем случае для  последовательных приемников

  является реактивным сопротивлением цепи, равным алгебраической сумме реактивных сопротивлений последовательно включенных элементов. В общем случае

 

 В приведенной схеме сумма векторов индуктивных напряжений меньше вектора напряжения на конденсаторе, поэтому < 0. В таком случае говорят, что реактивное сопротивление (или цепь в целом) носит емкостный характер.

 2.3.5. Параллельное включение приемников энергии

Рис. 2.13

 Рассмотрим цепь из двух параллельных ветвей (рис. 2.13 а). Допустим, что известны напряжение источника и параметры схемы. Нужно определить ток , потребляемый от источника, и угол сдвига  на входе цепи. Для получения расчетных соотношений построим векторную диаграмму токов. Предварительно рассчитаем токи в параллельных ветвях и углы их сдвига относительно приложенного напряжения. У первой ветви характер нагрузки индуктивный, ток отстает от  на угол

 ; .

 У второй ветви характер нагрузки емкостный, вектор  опережает  на угол 

  ; .

 В качестве основного вектора принимаем вектор напряжения источника , являющегося общим для двух параллельных ветвей (рис. 2.13 б). Тогда относительно него нетрудно сориентировать векторы токов  .

 При выборе направления тока второй ветви угол  откладываем от вектора  в направлении, параллельном вектору , поскольку начала этих векторов не совмещены. В соответствии с первым законом Кирхгофа () определяем входной ток. В дальнейшем все расчетные соотношения получим из векторной диаграммы. Для этого представим каждый вектор проекциями на взаимноперпендикулярные оси. Проекцию вектора тока на вектор напряжения назовем активной составляющей тока , а перпендикулярную проекцию – реактивной составляющей . На диаграмме (рис. 2.13 б) эти составляющие показаны для всех векторов. Составляющие токи  и  физически не существуют и должны рассматриваться только как расчетные. По диаграмме активная составляющая входного тока определяется как сумма активных составляющих токов в параллельных ветвях

  (2.28)

где  – активная проводимость цепи, равная арифметической сумме активных проводимостей отдельных ветвей

где   – активная проводимость -й ветви.

  Только в частном случае, когда ветвь представляет собой чисто активное сопротивление .

 Реактивная составляющая входного тока определяется как алгебраическая сумма реактивных составляющих токов в параллельных ветвях. Реактивную составляющую ветви с катушкой считают положительной, а с конденсатором – отрицательной. Знаки учитывают при подстановке соответствующих значений

  (2.29)

где  – реактивная составляющая проводимости цепи, равная алгебраической сумме реактивных проводимостей отдельных ветвей.

 В общем случае

где  – реактивная проводимость отдельной  -й ветви,

.  (2.30)

 Если рассматриваемая ветвь чисто реактивная: , проводимость  является обратной реактивному сопротивлению. Ток на входе цепи (см. векторную диаграмму на рис. 2.13 б) с учетом (2.28, 2.29)

  (2.31)

где  – полная проводимость цепи, равная геометрической сумме активной и реактивной проводимостей.

 Угол сдвига фаз  также определяется из векторной диаграммы. На рис. 2.14 а изображена векторная диаграмма входного тока , его составляющих  и  и напряжения источника . Треугольник, образованный вектором тока и его проекциями ,  и , называется треугольником токов (рис. 2.14 а). Если стороны этого треугольника разделить на напряжение , получится треугольник, подобный треугольнику токов – треугольник проводимостей. Он образован проводимостями , модули которых равны соответствующим проводимостям, а стороны совпадают с векторами , ,  треугольника токов (рис. 2.14 б).

  а) б) в)

Рис. 2.14

 На рис. 2.14 в показан треугольник проводимостей при <0. Из него находим соотношения между параметрами и формулы для определения угла сдвига фаз

. (2.32)

 Чтобы учесть знак , следует использовать формулы тангенса и синуса.

  В этой цепи, когда общий ток совпадает по фазе с напряжением, а входная реактивная проводимость  или , может возникнуть явление резонанса. При  противоположные по фазе реактивные составляющие токов равны, поэтому резонанс в такой цепи получил название резонанса токов.

 Пример 2.1. Определить действующее значение входного тока по известным токам в параллельных ветвях (риc. 2.15 а) = 3 A; = 1 A; = 5 A.

 Решение находим по первому закону Кирхгофа

,

в соответствии с которым строим векторную диаграмму.

Рис. 2.15

 Направления трех слагаемых тока  выбраны по отношению к вектору . Из диаграммы (рис. 2.16 б) определяем ток

 А.

 2.3.6. Мощности цепи синусоидального тока

 Энергетические соотношения в отдельных элементах  рассматривались в предыдущей теме. Рассмотрим участок электрической цепи, напряжение на котором , а ток .

 Определим мгновенную мощность

.

  Полученное уравнение содержит две составляющие: постоянную и синусоидальную, имеющую удвоенную частоту по сравнению с частотой тока и напряжения. Мгновенные значения тока, напряжения и мощности при индуктивном характере цепи ( > 0) показаны на рис. 2.16 а.

 В промежутках времени, когда  и  имеют одинаковые знаки, мгновенная мощность положительна, энергия поступает от источника в приемник, потребляется резистором и запасается в магнитном поле катушки. Когда же  и  имеют разные знаки, мгновенная мощность отрицательна и энергия частично возвращается от приемника к источнику. Активная мощность, поступающая в приемник, равна среднему значению мгновенной мощности за период

. (2.33)

  Тригонометрическая функция  называется коэффициентом мощности. Как видно из (2.33), активная мощность равна произведению действующих значений напряжения и тока, умноженному на коэффициент мощности. Чем ближе угол  к нулю, тем ближе  к единице и, следовательно, тем большая при заданных значениях напряжения и тока активная мощность передается от источника к нагрузке.

 Формулу активной мощности можно преобразовать с учетом полученных ранее соотношений

 Вт.  (2.34)

 Произведение действующих значений тока и напряжения на входе цепи называется полной мощностью и измеряется в вольт-амперах (ВА)

.  (2.35)

 Графически полная мощность характеризует амплитуду колебаний мгновенной мощности относительно средней (активной) мощности (рис. 2.16 а). Полная мощность является расчетной мощностью электрических установок (генераторов, трансформаторов и др.), для которых она указывается в качестве номинальной, например, для генератора номинальная (полная) мощность равна его активной максимальной мощности, которая может быть получена при  = 1. Однако для большинства потребителей < 1. Поэтому даже при номинальных значениях напряжения и тока энергетические возможности источника используются не полностью, так как .

При расчетах электрических цепей и эксплуатации электрооборудования пользуются также понятием реактивной мощности, которая вычисляется по формуле

  вар. (2.36)

 Реактивная мощность характеризует собой энергию, которой обмениваются генератор и приемник. Она определяется максимальным значением мощности на участке цепи с реактивными элементами

.

  Реактивная мощность цепи может быть положительной и отрицательной в зависимости от знака угла . При индуктивном характере входного сопротивления () реактивная мощность положительна, при емкостном характере () – отрицательна.

 Сравнив формулы (2.34)...(2.36), нетрудно установить связь между активной, реактивной и полной мощностями

.  (2.37)

 Соотношение (2.37) удобно представить в виде прямоугольного треугольника мощностей (рис. 2.16 б), который можно получить из треугольника напряжений умножением сторон на ток. Из треугольника мощностей имеем соотношения, широко используемые при расчетах

tgj = Q/P; cosj = P/S. (2.38)

Активная мощность, потребляемая приемником, не может быть отрицательной, поэтому всегда > 0, т. е. на выходе цепи . Активная мощность отображает совершаемую работу или передаваемую энергию в единицу времени.

Электромагнитные процессы, протекающие в электротехнических устройствах, как правило, достаточно сложны. Однако во многих случаях, их основные характеристики можно описать с помощью таких интегральных понятий, как: напряжение, ток, электродвижущая сила (ЭДС).
Расчет электротехнических цепей Лабораторные работы и решение задач