Оптика Дисперсия света Интерференция света Изучение эффекта Фарадея Дифракция света Оптическая пирометрия Оптическая физика Тепловое излучение тел Фотоэлектрический эффект Квантовый характер излучения

Искусственная оптическая анизотропия.

Оптически изотропные вещества могут стать анизотропными под действием ряда внешних воздействий, это явление называют искусственной оптической анизотропией.

 Фотоупругость (или пьезооптический эффект) - возникновение оптической анизотропии в первоначально изотропных веществах под воздействием механических напряжений Этот эффект первыми обнаружили Т. Зеебек (1813г.) и Д. Брюстер (1816г.). Например, при одностороннем сжатии или растяжении стеклянная пластина приобретает свойства одноосного кристалла, оптическая ось которого совпадает с направлением сжатия или растяжения. При этом разность показателей преломления обыкновенного и необыкновенного лучей в направлении, перпендикулярном оптической оси, пропорциональна напряжению σ

no – ne = k σ,

где k – коэффициент, зависящий от свойств вещества. Явление искусственной оптической анизотропии при деформациях используется для обнаружения остаточных внутренних напряжений, которые могут возникать в изделиях из стекла и других прозрачных изотропных материалов вследствие несоблюдения технологии их изготовления. Оптический метод изучения на прозрачных моделях распределения внутренних напряжений, возникающих в различных деталях машин и сооружений широко применяется в современной технике.

 Эффект Керра – Д. Керр (1875г.) исследовал связь между оптическими и электрическими явлениями и установил, что оптически изотропный диэлектрик в достаточно сильном электрическом поле приобретает свойства одноосного двояко преломляющего кристалла, оптическая ось которого совпадает с направлением напряженности электрического поля.

Схема установки для исследования эффекта Керра показана на рис. Ячейку Керра поместили между скрещенными поляризатором и анализатором. Ячейка Керра представляет собой герметичный сосуд а с жидкостью, в которую погружены обкладки плоского конденсатора. При подаче на пластины напряжения между ними возникает однородное электрическое поле. Под действием этого поля жидкость приобретает свойства одноосного кристалла, оптическая ось которого ориентирована вдоль поля. Возникающая разность показателей преломления no и ne пропорциональна квадрату напряженности поля Е

no – ne = k Е2,

или разность фаз

 или

где В – постоянная Керра, зависящая от природы вещества, длины волны λ0 и температуры, l – длина ячейки Керра.

Эффект Керра объясняется различной поляризуемостью молекул по разным направлениям. В отсутствие поля молекулы ориентированы хаотично, поэтому жидкость не обладает анизотропией, Под действием поля молекулы поворачиваются так, чтобы в направлении поля были ориентированы либо их дипольные электрические моменты (у полярных молекул), либо направление наибольшей поляризуемости (у неполярных молекул). В результате жидкость становится оптически активной. Эффект Керра безынерционен: время, за которое вещество переходит из анизотропное состояние в изотропное и обратно, не превышает 10-9с. Ячейки Керра применяются при записи звука на кинопленку, а в сочетании со скещенными поляризатором и анализатором в скоростной съемке.

Эффект Коттона–Мутона (аналог эффекта Керра в магнитном поле)- это явление возникновения оптической анизотропии у некоторых веществ при помещении их в магнитное поле. В достаточно сильных магнитных полях возникает анизотропия, появляется двойное лучепреломление. В этом случае среда ведет себя как оптически одноосный кристалл, ось которого совпадает по направлению с вектором напряженности магнитного поля H. Возникающая разность показателей преломления для необыкновенного и обыкновенного лучей монохроматического света при его распространении в направлении, перпендикулярном вектору Н, и пропорциональна квадрату напряженности поля Н:

nе – no = Cλ0 H2

где C – постоянная Коттона–Мутона, зависящая от природы вещества, длины волны λ0 и температуры.

 Линейный электрооптический эффект Поккельса – явление изменения двойного лучепреломления вещества из-за смещения собственной частоты во внешнем электрическом поле: 

nе – no = αE.

В отличие от эффекта Керра электрооптический эффект Поккельса пропорционален напряженности электрического поля.

Оптическая активность веществ.

При пропускании плоско поляризованного света через некоторые вещества наблюдается вращение плоскости поляризации. Вещества, способные вращать плоскость поляризации, называются оптически активными. Оптической активностью могут обладать кристаллы (кварц, киноварь), жидкости (скипидар, винная кислота), растворы оптически активных веществ в неактивных растворителях (водные растворы сахара, яблочной кислоты, спиртовые растворы камфоры, стрихнина). Оптическую активность проявляют многие природные соединения: белки, углеводы, гормоны, эфирные масла.

Угол поворота j плоскости поляризации для оптически активных кристаллов и чистых жидкостей

j = α d

где α –постоянная вращения, угол поворота плоскости поляризации слоем вещества единичной толщины; d – расстояние, пройденное светом в оптически активном веществе. Постоянная вращения зависит от природы вещества, температуры и длины волны света. Зависимость α от λ, называется дисперсией вращения. Наибольшей оптической активностью обладают некоторые жидкие кристаллы.

Угол поворота j плоскости поляризации для оптически активных растворов (закон Био)

j = [α] с d

где [α] – удельное вращение, с – массовая концентрация оптически активного вещества, d – расстояние, пройденное светом в оптически активном веществе.

Оптическая активность обуславливается как асимметричным строением молекул вещества, так и расположением частиц в кристаллической решетке. В зависимости от направления вращения плоскости поляризации оптические вещества делятся на право- и левовращающие. В первом случая осуществляется вращение плоскости вправо (по часовой стрелке), во втором – влево (против часовой стрелке).

Вращение плоскости поляризации объяснено О. Френелем (1823г.). Он предложил (рис. 4.18 а) линейно поляризованную монохроматическую волну представить в виде комбинации двух одновременно распространяющихся поляризованных по кругу монохроматических волн, векторы напряженностей Е1 и Е2 у которых равны половине амплитуды вектора Е и вращаются во взаимно противоположных направлениях с одинаковыми угловыми скоростями (рис. 4.18 б). В оптически активной среде волны Е1 и Е2 распространяются с разными фазовыми скоростями. На выходе из слоя толщиной l волны Е1 и Е2 складываются (рис.4.18 в), но между ними возникает сдвиг фаз Δj, пропорциональный толщине слоя l. Плоскость поляризации на выходе (О'О') оказывается повернутой относительно плоскости поляризации на входе (ОО) на угол поворота Δj/2.

М. Фарадеем (1845г.) было установлено, что вещества, не обладающие естественной оптической активностью, приобретают ее под действием магнитного поля. Это явление называется эффектом Фарадея или магнитное вращение плоскости поляризации. Угол поворота плоскости поляризации пропорционален напряженности магнитного поля Н, длине пути света в веществе l.

j = V H l

где V – постоянная Верде (или удельным магнитным вращением), которая зависит от природу вещества и длины волны света. Направление магнитного вращения плоскости поляризации определяется направлением магнитного поля и не зависит от направления распространения луча. Так, если отразить луч света с помощью зеркала и заставить пройти через намагниченное вещество еще раз только в обратном направлении, то угол поворота плоскости поляризации удвоится. Этим эффект Фарадея отличается от вращения плоскости поляризации света в естественных оптически активных средах.

Магнитное вращение плоскости поляризации обусловлено возникающей под действием магнитного поля прецессией электронных орбит. Оптически активное вещество под действием магнитного поля приобретает дополнительную способность вращать плоскость поляризации и угол поворота будет равен сумме углов поворота при естественной и искусственной оптических активностей.

Явления вращения плоскости поляризации лежат в основе метода определения концентрации растворов оптически активных веществ. Этот метод называется поляриметрией, а при определении содержания сахара сахариметрией. Они успешно используются в пищевой промышленности, в медицине, при исследовании биополимеров.

Современник Ньютона Гюйгенс предложил другую теорию света. Он исходил из аналогии между многими акустическими и оптическими явлениями. Свет рассматривался как упругие колебания, распространяющиеся в особой среде — в эфире, заполняющем все пространство. Эфир наделялся механическими свойствами (упругость, плотность). Эти свойства менялись в зависимости от среды, чем объяснялась зависимость фазовой скорости световой волны от среды распространения.
Лабораторная работа по физике Волновая и квантовая оптика