Оптика Дисперсия света Интерференция света Изучение эффекта Фарадея Дифракция света Оптическая пирометрия Оптическая физика Тепловое излучение тел Фотоэлектрический эффект Квантовый характер излучения

Поляризация света при двойном лучепреломлении.

Действие ряда поляризаторов основано на поляризации света при прохождении его через оптически анизотропные среды (т.е. среды, имеющие различные оптические свойства в различных направлениях). Все прозрачные кристаллы оптически анизотропны. Исключением являются кристаллы, имеющие кубическую кристаллическую решетку (например, соль NaCl). При прохождении света через оптически анизотропные кристаллы наблюдается явление двойного лучепреломления, которое состоит в том, что упавший на кристалл луч разделяется внутри кристалла на два луча, распространяющиеся с различными скоростями и в различных направлениях. Это явление впервые было обнаружено датским ученым Э. Бартолином в 1669 г. для исландского шпата.

В зависимости от типа симметрии оптически анизотропные кристаллы бывают одноосные либо двуосные, т.е. имеют одну или две оптические оси. Оптической осью называется такое направление в кристалле, вдоль которого распространяющийся свет не испытывает двойного лучепреломления. Важно отметить, что любая прямая параллельная данному направлению, также является оптической осью кристалла. Примером одноосного кристалла (рис. 4.9) является исландский шпат (диагональ кристалла ОО' совпадает с оптической осью), а также кварц, турмалин, апатит и другие. К двуосным кристаллам относятся гипс, слюда, топаз.

В одноосных кристаллах (рис. 4.9 а) один из преломленных лучей, образующихся при двойном лучепреломлении, лежит в плоскости падения и подчиняется закону преломления, поэтому его назвали обыкновенным лучом и обозначают буквой "о". Скорость обыкновенного луча υо численно одинакова по всем направлениям: υо = c/nо, где nо = const- показатель преломления кристалла для обыкновенного луча. Второй луч называют необыкновенным и обозначают буквой "е". Он не лежит в плоскости падения и не подчиняется закону преломления. Соответственно скорость необыкновенного луча υе = c/nе, где nе - показатель преломления кристалла для необыкновенного луча. Значения nе и υе зависят от направления распространения необыкновенного луча по отношению к оптической оси кристалла. Для луча, распространяющегося вдоль оптической оси показатели преломления обыкновенного и необыкновенного лучей равны nе = nо и υе = υо. Значение nе наиболее сильно отличается от nо для направления, перпендикулярного оптической оси. Все эти различия между обыкновенным и необыкновенным лучами имеют место только внутри кристалла. На выходе из кристалла оба луча распространяются с одинаковой скоростью. В двуосных кристаллах оба преломленных луча ведут себя как необыкновенные.

Исследование обыкновенного и необыкновенного лучей показывает, что оба луча на выходе из кристалла полностью поляризованы. Вектор Е обыкновенного луча колеблется перпендикулярно главной плоскости (на рис. 4.9 эти колебания обозначены точками), а вектор Е необыкновенного луча колеблется в главной плоскости (на рис. 4.9 эти колебания показаны стрелками). Главной плоскостью или главным сечением одноосного кристалла называется плоскость, проходящая через падающий луч и пересекающую его оптическую ось (рис. 4.9 б).

Двойное лучепреломление объясняется тем, что в кристаллах диэлектрическая проницаемость ε оказывается зависящей от направления. Для одноосных кристаллов диэлектрическая проницаемость в направлении оптической оси и диэлектрическая проницаемость в направлении, перпендикулярном к ней, имеют различные значения. Поскольку абсолютный показатель преломления , а для большинства кристаллов магнитная проницаемость µ ≈ 1, то . Следовательно, из анизотропии диэлектрической проницаемости ε вытекает анизотропия показателя преломления n.

Допустим, что в точке S (рис. 4.10) внутри одноосного кристалла находится точечный источник света. На рис. 4.10 показано распространение обыкновенного и необыкновенного лучей в кристалле. Главная плоскость совпадает с плоскостью чертежа, прямая ОО' – оптическая ось. Волновая поверхность обыкновенного луча является сферой (т.к. nо = const и υо = c/nо = =const), необыкновенного луча – эллипсоид вращения (т.к.
nе ≠ const и υе = c/nо ≠ const). На рис. 4.10 хорошо видно, что наибольшее расхождение волновых поверхностных обыкновенного и необыкновенного лучей наблюдается в направлении, перпендикулярном оптической оси. Сфера и эллипсоид касаются друг друга в точках их пересечениях с оптической осью ОО'. Если υе< υо (nе>nо), то эллипсоид вписан в сферу (рис. 4.10 а), такой одноосный кристалл называется оптически положительным (например, кварц). Если υе> υо (nе<nо), то эллипсоид описан вокруг сферы (рис. 4.10 б), такой одноосный кристалл называется оптически отрицательным (например, исландский шпат, турмалин, апатит).

Некоторые кристаллы способны по-разному поглощать о- и е-лучи. Зависимость показателя поглощения среды от ориентации электрического вектора световой волны и от направления распространения света в кристалле называется дихроизмом, а сами кристаллы – дихроичными. Примером дихроичного кристалла является турмалин. При толщине
в 1 мм пластинка турмалина полностью поглощает о-лучи и свет, прошедший сквозь нее, оказывается полностью поляризованным. Дихроичные пластинки могут применяться как поляризаторы света. Еще более ярко выращенным дихроичным свойством обладают кристаллы герапатита (сернокислого йод-хинина).

 

 

 

 

 

4. 4. Поляризация света.

Устройства, которые служат для поляризации света, называются поляризаторами. В качестве поляризаторов можно использовать:

cтопу Столетова, действие которой основано на поляризации света при отражении и преломлении на границе раздела двух диэлектриков (рис. 4. 7);

поляризационные призмы, действие которой основано на поляризации света при двойном лучепреломлении.

поляроиды, действие которых основано на свойствах дихроичных кристаллов.

Высококачественным поляризатором является поляризационная призма Николя (или просто николь), действие которой основано на поляризации света при двойном лучепреломлении в исландском шпате. Призма Николя (рис. 4.11) представляет собой две призмы из исландского шпата, склеенные вдоль линии АВ канадским бальзамом, показатель преломления которого равен nк.б. = 1,55. Оптическая ось ОО' призмы составляет с входной гранью угол 480. Падая на грань призмы АС, естественный луч раздваивается на два луча: обыкновенный (nо = 1,66) и необыкновенный (nе = 1,51). Попадая на границу раздела "исландский шпат – канадский бальзам" обыкновенный луч испытывает полное внутреннее отражение, так как этот луч распространяется из оптически более плотной в оптически менее плотную среду (nо > nк.б. > nе) и угол падения 76,50 больше предельного угла, а затем поглощается зачерненной гранью СВ. Необыкновенный луч свободно проходит через призму и выходит из нее плоскополяризованным.

Поляроиды, действие которых основано на свойствах дихроичных кристаллов, представляют собой целлулоидную пленку в которую вкраплены большое количество одинаково ориентированных кристалликов (например, геропатита). Поляроиды по сравнению с призмами менее прозрачны и в них степень поляризации сильно зависит от длины волны падающего света. Преимуществом перед призмами является только то, что их можно изготовить с большей площадью поверхности.

 

Современник Ньютона Гюйгенс предложил другую теорию света. Он исходил из аналогии между многими акустическими и оптическими явлениями. Свет рассматривался как упругие колебания, распространяющиеся в особой среде — в эфире, заполняющем все пространство. Эфир наделялся механическими свойствами (упругость, плотность). Эти свойства менялись в зависимости от среды, чем объяснялась зависимость фазовой скорости световой волны от среды распространения.
Лабораторная работа по физике Волновая и квантовая оптика