Оптика Дисперсия света Интерференция света Изучение эффекта Фарадея Дифракция света Оптическая пирометрия Оптическая физика Тепловое излучение тел Фотоэлектрический эффект Квантовый характер излучения

Дисперсия света

Дисперсией света называется совокупность явлений, обусловленных зависимостью абсолютного показателя преломления вещества от длины световой волны в вакууме. Первые экспериментальные исследования этой зависимости принадлежат Ньютону, который произвел (1672 г.) знаменитый опыт с разложением света на цвета (спектр) при преломлении в призме. В прозрачных бесцветных средах показатель преломления n растет с уменьшением длины волны λ0, где λ0 – длина волны в вакууме. Величина , называемая дисперсией вещества, так же увеличивается по модулю с уменьшением λ0 . Такой характер дисперсии называют нормальным (рис. 2 участки 1-2 и 3-4).

Возможен и обратный ход дисперсии, когда показатель преломления уменьшается с уменьшением длины волны. Такой вид дисперсии называется аномальной (рис. 2 участок 2-3). Было установлено, что аномальная дисперсия тесно связана с поглощением света. Все вещества, для которых наблюдается аномальная дисперсия, сильно поглощают свет в этой области частот. На рис.2 штриховая линия изображает кривую поглощения.

2.3. Электронная теория дисперсии света

Итак, при помещении диэлектрика в электрическое поле в атомах и молекулах индуцируются дипольные моменты . Поскольку электромагнитное поле световой волны является переменным, то дипольные электрические моменты молекул периодически меняются с частотой падающего света. Рассмотрим силы, действующие на электроны в атомах и молекулах.

Вынуждающая сила. Вынужденные колебания электрона возникают под действием световой волны, распространяющейся в среде. Магнитная составляющая электромагнитного поля оказывает на частицу очень слабое воздействие. Следовательно, действие световой волны определяется напряженностью электрического поля этой волны, которая меняется по закону:

Е = Е0ехр(iωt).

Тогда F = eЕ0ехр(iωt), где F – сила, действующая на электроны со стороны электрического поля, ω – частота падающего света. Такое допущение справедливо, если не учитывать действия окружающих атомов, которые также поляризуются проходящей волной.

Удерживающая сила. Представляя атом гармоническим осциллятором определенной частоты, можно считать, что электрон в атоме удерживается в положении равновесия квазиупругой силой:

Ff = – kr,

где k – коэффициент квазиупругой связи.

Масса электрона m и коэффициент k определяют циклическую частоту собственных колебаний гармонического осциллятора:

.

Тормозящая сила. Допущение о гармоническом колебании электрона в атоме имеет приближенный характер. В действительности колеблющийся электрон постепенно теряет свою энергию. Потерю энергии можно учесть введением силы сопротивления, пропорциональной скорости:

Fc = – ,

где γ – коэффициент сопротивления, зависящий от природы атома. Таким образом, уравнение движения осциллирующего электрона запишется в виде:

,

или, перегруппировав члены уравнения:

,

где  – коэффициент затухания, ω0 – частота собственных колебаний. Решение такого уравнения имеет вид:

r = r0ехр(iωt), где .

С учетом того, что: , , , где μ = 1 для диэлектриков, получим окончательный результат, устанавливающий зависимость показателя преломления от частоты, то есть наличие дисперсии:

 (4)

В области от ω = 0 до ω » ω0 показатель преломления n > 1 и возрастает с возрастанием ω.

В области от ω » ω0 до ω = ∞ показатель преломления n < 1 и возрастает от -∞ до 1. В обоих случаях наблюдается нормальная дисперсия (рис. 3). Обращение n в бесконечность при ω = ω0 не имеет физического смысла и возникло в результате упрощенного предположения об отсутствии поглощения (δ = 0).

В видимой области спектра электромагнитных волн все прозрачные вещества не имеют полос поглощения. При переходе в ультрафиолетовую область спектра большинство таких веществ обладает интенсивным поглощением. Это означает, что частота собственных колебаний осциллирующего электрона соответствует ультрафиолетовой области спектра. Из формулы (4) получаем, что если ωкр< ω < ωфиол, то nкр< nфиол, т.е. для прозрачных веществ в видимой области в соответствии с опытом наблюдается нормальная дисперсия (рис.2).

 

С возникновением квантовой теории и признании корпускулярно-волнового дуализма материи возникают успешные попытки синтеза волновых и корпускулярных представлений. Свет (и не только) рассматривается теперь как объект, отличающийся от частицы и волны, как нечто, проявляющее и волновые и корпускулярные свойства. Современное развитие теории света дается в настоящее время квантовой электродинамикой, изучение которой выходит далеко за рамки данного курса.
Закон сохранения полной механической энергии http://hisd.ru/
Лабораторная работа по физике Волновая и квантовая оптика