Теория радиосигналов Особенности анализа радиосигналов Линейные радиоэлектронные цепи Генерирование колебаний  в электрических цепях Анализ нелинейных цепей Детектирование АМ-колебаний Анализ параметрических цепей

Фильтрация сигналов на фоне помех.

Задачи и методы фильтрации

Электрическим фильтром называется пассивный четырехполюсник пропускающий электрические сигналы некоторой полосы частот без существенного ослабления или с усилением, а колебания вне этой полосы частот - с большим ослаблением. Такие устройства применяются для выделения полезных сигналов на фоне помех. Задача фильтрации формулируется следующим образом.

Если на вход линейного фильтра поступает смесь сигнала и помехи

   (1)

то проблема состоит в том, как наилучшим образом выделить сигнал их этой смеси, т.е. как создать оптимальный фильтр. Известными считаются статические характеристики (т.е. спектр или корреляционная функция)

функции х(t), представляющей собой смесь сигнала и помехи. Искомой является периодическая функция оптимального фильтра.

Задача об оптимальной фильтрации решается по-разному в зависимости от того смысла, который вкладывается в понятие оптимальности. Рассмотрим три наиболее важных случаи оптимальной фильтрации.

1. Форма сигнала известна. От фильтра требуется только сохранение полученного сообщения, заключенного в сигнале, т.е. сохранение неискаженным помехой информационного параметра сигнала и не требуется сохранение формы. Такая задача может быть поставлена при фильтрации сигналов, форма которых известна на приемной стороне (например, обнаружение сигнала в радиотелеграфии и радиолокации). Фильтр при этом называют оптимальным, если в некоторый момент времени t0 на его выходе обеспечивается максимальное отношение сигнала к среднеквадратическому значению напряжения шума. Такой фильтр может быть интегратором, поскольку речь идет о типовом значении полезного сигнла. При этом он должен лучше пропускать те частоты, на которых больше интенсивность спектральных составляющих сигнала и меньше интенсивность помех.

Для передаточной функции только оптимального фильтра теория дает следующие выражения:

  (2)

где а - некоторая постоянная;

  - величина, комплексно сопряженная амплитудному спектру сигнала;

  - спектр мощности помехи.

В случае помехи с равномерным спектром частная характеристика оптимального фильтра с точностью до постоянного множителя совпадает с амплитудным спектром сигнал:

  (3)

Отсюда специфическое название подобных оптимальных фильтров - согласованные фильтры (т.е. согласованные с сигналом).

Например, при приеме сигнала в виде передаточной повторяющихся импульсов, спектр каждого из которых состоит из отдельных узких полос (см. рис.), фильтр должен пропускать лишь эти полосы.

Рассматриваемый сигнал пройдет через такой фильтр без искажений, а мощность помехи уменьшится, т.к. она будет складываться из мощностей лишь тех спектральных составляющих помехи, которые попадут в полосу прозрачности фильтра. Такой фильтр для приема последовательностей импульсов получил название гребенчатого фильтра. Его применение приводит к тем большему увеличению превышения сигнала над помехой, чем уже полоса прозрачности фильтра. В свою очередь полосы прозрачности могут быть сделаны тем более узкими, чем больше характер последовательности приближается к периодическому закону ( в этом случае полосы спектра превращается в линии). Но приближение к периодическому сигналу, т.е. достаточно многократное его повторение, эквивалентное увеличению длительности сигнала. Таким образом, согласованная фильтрация повышает помехоустойчивость как бы за счет увеличения длительности полезного сигнала.

2. Форма сигнала неизвестна, а от фильтра требуется ее сохранения. Например, фильтрация после детектора должна обеспечивать наилучшее воспроизведение на фоне шума не одного или нескольких параметров сигнала, а всего сигнала S(t). В этом случае в качестве критерия оптимальности (точности воспроизведения сигнала) удобно принять среднеквадратичнную ошибку, т.е. средний квадрат уклонения воспроизведенного сигнала от периодического. если сигнал и помеха являются независимыми и стационарными случайными процессами, то частотная характеристика такого оптимального фильтра, обеспечивающего минимальную среднеквадратичную ошибку, определяется спектрами мощности сигналом РС и помехи GП.

  (4)

Фильтр ослабляет те спектральные составляющие, которые сильней поражены помехой, и для которых больше отношение GП/ РС А на тех частотах, где помеха отсутствует GП<< РС, коэффициент передачи K→1.

3. Выделение длительного периодического сигнала из его смеси с помехой может быть осуществлено путем исследования функции корреляции этой смеси. Корреляционный фильтр, осуществляющий такое исследование, содержит блок переключения и блок усреднения (интегратор).

При взаимокорреляционной фильтрации, когда фильтр, располагая образцом сигнала, определяет функцию взаимной корреляции между принятой смесью X(t) и образцом сигнала S(t) (в данном случае речь идет только о констатации факта наличия сигнала):

 

Если сигнал и помеха некоррелированы, то  и напряжения  будет свидетельствовать о наличие сигнала в смеси.

Автокорреляционная фильтра используется при отсутствии определенных сведений о форме сигнала. Фильтр в этом случае определяет автокорреляционную функцию смеси:

 

При отсутствии корреляции между сигналом и помехой последние два слагаемых исчезнут. Что касается оставшихся двух слагаемых, то первое из них может носить черты периодичности, т.к. является автокорреляционной функцией сигнала близкого к периодическому, а второе обращается в ноль, если сдвиг больше интервала корреляции помехи П. Таким образом, при достаточно большом сдвиге  и времени усреднения Т наличие напряжения KC.C() на выходе коррелятора свидетельствует о наличии периодического сигнала в смеси.

Однако реальные сигналы связи не являются периодическими и ограничены некоторой длительностью с. Следовательно, при с автокорреляционная функция сигнала становится равной нулю (см. рис.). С другой стороны, интервал корреляции помехи П возрастает тем больше, чем большему ограничению подвергается спектр помехи в фильтре, поскольку помеха приобретает характер периодичности. При оптимальной фильтрации до коррелометра П может превысить с и корреляционная фильтрация не даст никакого эффекта.

Таким образом, автокорреляционная фильтрация эффективна только в том случае, если с>П, т.е. при широкой полосе пропускания фильтровых цепей и достаточно длительных сигналов. Повышение помехоустойчивости сигнала по длительности над помехой.

Сигнал, в самом общем смысле, это зависимость одной величины от другой, и с математической точки зрения представляет собой функцию. Наиболее распространенное представление сигналов - в электрической форме в виде зависимости напряжения от времени U(t). Так, например, сигнал изменения напряженности магнитного поля по профилю аэросъемки
Основы цифровой обработки сигналов