Часы-браслет Pandora    + серьги Dior

Часы-браслет Pandora + серьги Dior

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Теория радиосигналов Особенности анализа радиосигналов Линейные радиоэлектронные цепи Генерирование колебаний  в электрических цепях Анализ нелинейных цепей Детектирование АМ-колебаний Анализ параметрических цепей

Баланс мощностей в параметрических цепях.

Рассматриваемая модель параметрической цепи реально представляет собой нелинейную цепь. А в цепи, содержащей нелинейный конденсатор, под воздействием напряжения генератора накачки и напряжения генератора сигнала, возникают колебания комбинационных частот

Чтобы представить себе как перераспределяется энергия информационного сигнала и сигнала накачки между комбинационным колебанием рассмотрим следующую цепь.

Пусть параллельно нелинейному конденсатору включены три цепи: цепь накачки, цепь сигнала и колебательный контур. Последний называют холостым контуром. Контур настроен на одну из комбинационных частот к, и, поэтому, можно принять, что других комбинационных колебаний не существует. Сумма средних мощностей колебаний сигнала PC, накачки PНК и комбинационной частоты PК должна быть равна нулю(закон сохранения энергии):

  (21)

Переходя в (21) от средних мощностей к энергиям в соответствии с (17) получим:  Подставляя сюда  находим, что

  (22)

Равенство (22) при произвольных  и  выполняется, если каждое слагаемое равно нулю (поскольку они не связаны общей частотой):

 

Переходя от энергии к средним мощностям получаем:

  (23)

Уравнения (23) выражают закон сохранения энергии в параметрических цепях. Их называют уравнениями Мэнли-Роу. И они являются частным случаем общей теоремы Мэнли-Роу о балансе мощностей в спектре колебания параметрической цепи, содержащей реактивную нелинейность (емкость или индуктивность). Теорема записывается в виде:

 

Они определяют законы распределения энергии сигнала накачки между гармониками выходного сигнала

Здесь Pmn - средняя мощность колебания на комбинационной частоте .

Запишем уравнения Мэнли-Роу для частного вида цепи, в которой существуют колебания только на четырех частотах:

 .

Для этого в (23) необходимо задать две пары значений m и n: m=1, n=1 и m=-1, n=1.

Тогда

  (24)

Эти формулы и устанавливают количественные соотношения (баланс) между мощностями колебаний различных частот.

 

Параметрические усилители

На основании принципа параметрического резонанса строятся параметрические усилители. Различают три наиболее важных режима усиления: 1) с преобразованием частоты “вверх”; 2) с преобразованием частоты “вниз”; 3) регенеративный вырожденный режим.

Первые два режима реализованы в двухканальном усилителе, схема которого приведена на рис. Усилитель содержит два контура: сигнальный (L1C1), настроенный на частоту с, и выходной (L2C2), настроенный на одну из комбинационных частот (+ или -). Режим с преобразованием частоты “вверх” или “вниз” определяется частотой настройки выходного контура. На рис. также обозначены: GНС - проводимость нагрузки сигнального контура, GН2 - проводимость нагрузки холостого контура.

6.6.1. В усилителе с преобразованием частоты “вверх” выходной контур настраивается на суммарную частоту  и соотношение (24) принимает вид:

  (25)

Так как всегда Р+>0 (Р+ - мощность выделяемая в нагрузке), то из (25) следует РНК<0 и РС<0. Это означает, что оба генератора (и сигнала, и накачки) отдают мощность в выходной контур. Из второго уравнения (25) вытекает, что максимально возможный коэффициент усиления в рассматриваемом режиме равен

Усилители такого типа имеют ограниченное применение, поскольку на высоких частотах (там где и используется параметрические усилители) трудно обеспечить большое значение отношения  Достоинством такого режима усиления является высокая устойчивость работы усиления.

В усилителе с преобразованием частоты “вниз” выходной контур подстраивается на резонансную частоту  и уравнение (24) принимает вид:

  (26)

Как видно из первого равенства (26), мощности РС и Р- положительные, поскольку мощность, потребляемая нагрузкой - Р>0. Это означает, что часть мощности генератора накачки поступает в сигнальный контур и компенсирует часть теряемой в ней мощности, т.е. в усилителе происходит регенерация на частоте сигнала. Из (26) нельзя получить коэффициент усиления, поскольку РС включает не только мощность, потребляемую нагрузкой, но и часть мощности, возникающей за счет регенерации. Тем не менее, записав первое уравнение (26) в виде   можно утверждать, что усиление будет тем больше, чем больше отношение

Усилители данного типа неустойчивы в работе, так как в сигнальный контур поступает мощность даже в отсутствие сигнала, что при определенных условиях может привести к самовозбуждению.

Одиночный регенеративный усилитель является частным случаем усилителя с преобразованием частоты “вниз”.

В этом усилителе частота накачки равна удвоенной частоте сигнала, a разностная частота - частоте сигнала  поэтому отпадает необходимость в отдельном контуре, настроенном на разностную частоту. Двухконтурная схема “вырождается” в одноконтурную, откуда происходит название “вырожденный” режим. Если условие  выполняется строго, в контуре выделяется одно усиленное колебание, по амплитуде равное сумме колебаний на частоте сигнала и разностной частоте. Такой режим работы называется синхронным. Как было показано, он зависит от фазовых соотношений колебаний накачки и сигнала.

В реальных условиях невозможно точно выполнить условие синхронизации. Поэтому одноконтурный регенеративный усилитель всегда работает в асинхронном режиме, когда . При этом величина  становится функцией времени, поскольку получает случайную добавку t. Вносимое сопротивление, определяемое формулой (18), также становится случайной функцией времени и, как следствие, возникают случайные изменения усиления. Это является серьезным недостатком одноконтурных усилителей.

Параметрические усилители применяются в диапазоне частот от сотен МГц до десятков ГГц. Они имеют относительно узкую полосу пропускания 1...3% и за счет этого, а также из-за отсутствия дробового эффекта, присущего активным элементом, низкий уровень шумов.

Сигнал, в самом общем смысле, это зависимость одной величины от другой, и с математической точки зрения представляет собой функцию. Наиболее распространенное представление сигналов - в электрической форме в виде зависимости напряжения от времени U(t). Так, например, сигнал изменения напряженности магнитного поля по профилю аэросъемки
Основы цифровой обработки сигналов