Часы-браслет Pandora    + серьги Dior

Часы-браслет Pandora + серьги Dior

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Начертательная геометрия Поверхности второго порядка Аксонометрические изображения Позиционные задачи Способ концентрических сфер Метрические задачи Способ вращения Построить пересечение конуса и призмы

Аксонометрические изображения довольно широко применяются в конструкторской работе. Это объясняется тем, что они обладают большой наглядностью и сравнительно простым построением.

Особое значение приобретают аксонометрические изображения еще и потому, что в наши дни все большее внимание уделяется вопросам эстетики промышленных форм, внешнего вида изделий (дизайну).

Слово "аксонометрия" в переводе с греческого означает "измерения по осям". Аксонометрическая проекция - это чертеж, состоящий из одной параллельной проекции данного оригинала, дополненной пространственной системой координат, к которой предварительно был отнесен изображаемый оригинал.

Рассмотрим пример получения аксонометрической проекции.

Возьмем точку А, отнесенную к пространственной системе прямоугольных координат XYZ. Выберем плоскость проекций П' и спроецируем на нее по некоторому данному направлению S, точку А с системой прямоугольных координат (рисунок 6-1).

0 - начало координат; 0XYZ- натуральная система координат; ОАxА1А - координатная ломаная; O'X'Y'Z' - аксонометрическая система координат; 0'А'хА'1А' - аксонометрическая координатная ломаная; А'- аксонометрическая проекция точки А; Х,Y,Z- натуральные координаты точки А; Х',Y',Z'-аксонометрические координаты точки А.

Из построения следует, что каждой точке А пространства на плоскости проекций П' соответствует определенная точка А'. Однако обратное утверждение будет неверно т.к. точке А' на П' соответствует любая точка проецирующего луча АА'.

Чтобы устранить эту неопределенность и обеспечить взаимную однозначность между точками пространства и аксонометрическими проекциями, на плоскость П' проецируют и одну ортогональную проекцию т. А - А1. Ее аксонометрическую проекцию А'1 называют вторичной проекцией т.А. В этом случае А' и А'1 определяют положение т. А в пространстве (зная А1 находим Ах; по Ах → А'х; по А'х и А1®А').

 

 

ПОКАЗАТЕЛИ ИСКАЖЕНИЯ ПО АКСОНОМЕТРИЧЕСКИМ ОСЯМ

В общем случае длина отрезков осей координат в пространстве не равна длине их проекций. Искажение отрезков осей координат при их проецировании на П' характеризуется коэффициентами искажения.

Коэффициентом искажения называется отношение длины проекции отрезка оси к его натуральной длине.

Приняты коэффициенты искажения по осям:

 По оси X:U =О'Х'/ОХ=О'А'х/ОАх=Х'АХА;

  По оси Y: V=O'Y'/OY=A'xA'/AxA=Y'A/YA

 По оси Х: W=O'Z'/OZ=A'1A/A1A=Z'AZA.

В зависимости от соотношения коэффициентов искажения по осям различают три вида аксонометрических проекций:

1) изометрические - коэффициенты искажения по всем осям равны между собой - U=V=W;

2) диметрические - - коэффициенты искажения по двум осям равны между собой, а по третьей отличаются от первых двух –

U=V≠W; U=W≠V; V=W≠U.

3) триметрические – коэффициенты искажения по всем осям различны-

U≠V≠W, где U≠W.


17. ОРТОГОНАЛЬНЫЕ И КОСОУГОЛЬНЫЕ АКСОНОМЕТРИЧЕСКИЕ ПРОЕКЦИИ

В зависимости от направления проецирования S по отношению к плоскости проекций П' аксонометрические проекции подразделяются на:

ортогональные (когда проецирующие лучи направлены перпендикулярно к П');

косоугольные (когда проецирующие лучи направлены к П' под углом отличным от 90˚).

Для построения аксонометрической проекции точки А необходимо построить координатную ломаную линию. Аксонометрические координаты точки будут равны: X'A=U´XA; Y'A=V´YA; Z'=W´ZA.

17.1 Основное предложение аксонометрии

При построении параллельной аксонометрической проекции можно произвольно выбрать плоскость проекций П' и направление проецирования.

Любому изменению взаимного положения осей координат и плоскости проекций (или изменению направления проецирования) будет соответствовать как изменение положения аксонометрических осей, так и коэффициентов искажения по этим осям.

Между коэффициентами искажения и углом проецирования существует следующая зависимость:

U²+V²+W²=2+ctg j (теорема Польке)

где: j - угол между направлением проецирования и плоскостью проекций.

При j = 90° (ортогональная аксонометрическая проекция):

U²+V²+W²=2

17.2 Свойства ортогональной аксонометрической проекции

Наибольшее применение в практике получили прямоугольные аксонометрические проекции, которые обладают большей наглядностью и упрощениями, которые в них достигаются. Свойств этих три. Нам сейчас важно запомнить одно:

 коэффициенты искажения в ортогональной аксонометрии равны косинусам углов наклона натуральных осей к плоскости проекций

Все три коэффициента искажения ограничены поэтому крайними значениями 0 и 1.


18. СТАНДАРТНЫЕ АКСОНОМЕТРИЧЕСКИЕ ПРОЕКЦИИ

ГОСТ 2.317-69 предусматривает три частных вида аксонометрических проекций.

18.1 Прямоугольная изометрия

Аксонометрические оси в пря- моугольной изометрии образуют между собой углы 120°. Коэффициенты искажения по аксонометрическим осям (рисунок 6-2) U=V=W.

Отсюда Cosa=Cosb=Cosg и a=b=g.

Это означает, что натуральные координатные оси одинаково наклонены к плоскости проекций, тогда: U²=V²=W² откуда 3U²=2 и U»0,82.

Рисунок 6-2

На практике пользуются приведенной прямоугольной изометрией, в которой показатели искажения приводятся к единице, т.е.U=V=W=1. Коэффициент приведения m=U/u=1,0/0,82=1,22,. Аксонометрическое изображение будет увеличено в 1.22 раза относительно оригинала.

МА=1,22:1. При U=V=W=0.82 м.о.э.=0,58d, Б.О.Э.=d.

 При U=V=W=1,0 м.о.э.=0,71d, Б.О.Э.=1,22d.

18.2 Прямоугольная диметрия

Эта проекция представлена на рисунке 6-3. Здесь U=W; V¹W, V=U/2.

Тогда U²+U²/4+U²=2 откуда U=W=0.94, V=0.47.

При приведении коэффициентов к единице (округлении):

U=W=1.0, V=0.5 получим аксонометрическое изображение увеличенным в m=1/0.94=1.06 раза. МА=1.06:1.

При U=W=1 и V=0.5 м.о.э. = 0.35d; Б.О.Э. = 1.06d для координатных плоскостей ХОУ и YOZ, а для координатной плоскости ХOZ: м.о.э. = 0.95d, Б.О.Э. = 1.06d.

 

 

 

 

18.3 Косоугольная фронтальная диметрия

В практике встречаются случаи, когда целесообразно сохранить неискаженными фигуры расположенные в плоскостях, параллельных фронтальной плоскости проекций (например, при изображении технической детали, имеющей много окружностей в параллельных плоскостях). Эти детали проще изобразить, если окружности будут проецироваться в аксонометрии без искажения.

Для получения такой аксонометрической проекции плоскость проекций П' располагают параллельно координатной плоскости ХОZ. Тогда оси координат Х и Z, параллельные П', проецируются на неё в натуральную величину, и коэффициенты искажения U=W=1. Коэффициент искажения по оси Y будет равен:

U²+V²+W²=2+ctg j откуда V²=ctg j

где j-угол между направлением проецирования и плоскостью проекций П'.

< На практике направление оси Y выбирают таким образом, чтобы углы образованные аксонометрической осью Y с осями Х и Z- равнялись 135°, а показатель искажения V=0.5 (рисунок 6-4).

Легко определить, что угол j=arc ctg 0.5=63°, м.о.э.=0.33d, Б.О.Э.=1.07d. Однако еще раз нужно подчеркнуть, что косоугольная фронтальная диметрия применяется тогда, когда деталь имеет много окружностей, расположенных в параллельных плоскостях (рисунок 5-5). Такую деталь целесообразно изображать в косоугольной фронтальной диметрии.

Курс лекций Начертательная геометрия в которой рассматриваются следующие основные вопросы : 1) Построение изображений или чертежей предметов; 2) Решение геометрических задач в пространстве при помощи чертежей на плоскости. Начертательная геометрия является лучшим средством развития у человека пространственного воображения, без которого не мыслимо инженерное творчество.
Начертательная геометрия в конструкторской работе