Часы-браслет Pandora    + серьги Dior

Часы-браслет Pandora + серьги Dior

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Аксонометрия и проекции Комплексный чертёж Монжа Взаимное положение прямых и плоскостей Преобразование комплексного чертежа Поверхностью вращения Способ вспомогательных секущих сфер Развёртки поверхностей

Поверхности вращения

Понятие о поверхности вращения

  Поверхностью вращения называется поверхность, образованная в процессе вращения некоторой линии вокруг неподвижной оси. Линия, которая вращается, называется образующей поверхности. Образующая линия может быть прямой, плоской или пространственной кривой. Каждая точка образующей линии поверхности (например, точка В) при своём вращении будет описывать окружность с центром на оси i, которая располагается в плоскости, перпендикулярной оси вращения (рис.10.1). Такие окружности называются параллелями. Наибольшая параллель называется экватором, наименьшая – горлом.

Рис.10.1

 Линия поверхности вращения, лежащая в плоскости, проходящей через ось вращения, называется меридианом. Все меридианы поверхности вращения равны между собой. Меридиан, лежащий в плоскости уровня, называется главным. Множество всех параллелей или меридианов представляет собой каркас поверхности вращения. Через каждую точку поверхности проходит одна параллель и один меридиан.

 При изображении поверхности вращения на комплексном чертеже обычно поверхность располагают так, чтобы её ось i была бы проецирующей прямой. На рис.10.1(а) приведена поверхность вращения, образованная при вращении кривой l. В качестве оси вращения используется горизонтально проецирующая прямая i. Комплексный чертеж поверхности приведён на рис.10.1(б). Экватор поверхности вращения описывает точка А образующей, а горло – точка В. Меридиан m лежит в плоскости Δ, а главный меридиан – в плоскости Σ. В данном случае очерком поверхности вращения на горизонтальной плоскости проекций П1 является проекция экватора, а на фронтальной плоскости П2 – проекция главного меридиана.

Геометрическая часть определителя поверхности вращения Φ состоит из образующей линии и оси вращения: Φ(l,i), где l – образующая линия поверхности, i – ось вращения. Алгоритмическая часть определителя поверхности вращения состоит из операции вращения образующей вокруг оси и построения каркаса параллелей необходимой плотности.

Для построения точки, лежащей на поверхности вращения, необходимо провести вспомогательную линию на поверхности (обычно параллель или меридиан), и расположить проекции точки на одноименных проекциях вспомогательной линии.

Поверхности вращения получили самое широкое применение в деталях различных механизмов и машин. Основными причинами этого является, с одной стороны, распространённость вращательного движения, а с другой стороны – простота обработки поверхностей вращения.

2. Поверхности вращения, образованные прямой линией

 Вращением прямой линии можно получить следующие виды поверхностей вращения:

цилиндр вращения, если образующая параллельна оси вращения (рис.10.2);

конус вращения, если образующая пересекается с осью вращения (рис.10.3);

однополостный гиперболоид вращения, если образующая скрещивается с осью вращения (рис.10.4).

Рис.10.2

Рис.10.3

Рис.10.4

Поверхность имеет две образующие линии l(ВС) и l'(В'С'), наклоненные в разные стороны. Эти образующие пересекаются между собой. Точка их пересечения лежит на наименьшей параллели (в данном случае в точке А). Отрезок ОА является кратчайшим расстоянием между образующей и осью. Таким образом, на поверхности однополостного гиперболоида располагаются два семейства прямолинейных образующих. Все образующие одного семейства - скрещивающиеся прямые. Каждая образующая одного семейства пересекает все образующие другого. Через каждую точку поверхности проходят две образующие разных семейств. Меридианом поверхности является гипербола.

Рассмотренные поверхности вращения можно отнести и к классу линейчатых поверхностей, так как они образованы в процессе движения прямой линии. Кроме того, поверхности являются поверхностями второго порядка: максимальное число точек пересечения каждой из этих поверхностей с прямой общего положения равно двум.

Построение точки на таких поверхностях можно выполнить при помощи параллели или при помощи прямолинейной образующей.

Научное обоснование методов начертательной геометрии произошло в семнадцатом веке в связи с начавшемся бурным развитием в Европе промышленности. Основоположником считается видный французский ученый и политический деятель Гаспар Монж (1746 - 1818 гг.). Его учение о ортогональном методе проецированная сохранилось до нашего времени .
Начертательная геометрия Задачи и примеры