Часы-браслет Pandora    + серьги Dior

Часы-браслет Pandora + серьги Dior

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Аксонометрия и проекции Комплексный чертёж Монжа Взаимное положение прямых и плоскостей Преобразование комплексного чертежа Поверхностью вращения Способ вспомогательных секущих сфер Развёртки поверхностей

Графический способ задания поверхностей предполагает задание поверхности на комплексном чертеже. При этом, как уже было сказано выше, поверхность считается заданной, а ее чертеж – метрически определенным, если по одной проекции точки, лежащей на поверхности, можно построить другую ее проекцию. Чаще всего поверхность задается на чертеже проекциями элементов своего определителя, т.е. тех геометрических объектов, с помощью которых поверхность была образована. Алгоритмическая часть определителя поверхности переводится при этом в алгоритм графических и аналитических операций, которые необходимо осуществить над проекциями элементов определителя, чтобы построить проекции произвольных точек или линий поверхности. Однако наглядность такого чертежа поверхности очень низкая. Для улучшения наглядности чертеж поверхности приходится дополнять проекциями наиболее характерных или важных точек и линий поверхности, в том числе очерковыми линиями ее проекций. Очерковыми линиями (или очерком) проекций поверхности называются линии, ограничивающие области ее проекций (рис.9.3).

Рис.9.3

Часто поверхность задается на чертеже некоторой совокупностью ее точек (называемой точечным каркасом поверхности) или линий (линейный или сетчатый каркас). Например, поверхность, образованная кинематическим способом, может задаваться на чертеже проекциями семейства направляющих линий и семейства образующих линий. Однако в этом случае поверхность будет не вполне определена, так как между точками и линиями каркаса поверхность не задается. Поэтому построить промежуточные точки и линий поверхности можно лишь приближенно. Для придания однозначности чертежу поверхности обычно пользуются одним из двух способов:

1. Задается алгоритм графических операций перехода от заданных линий каркаса к промежуточным линиям.

2. С помощью аналитических методов аппроксимации и какого-либо класса моделирующих функций рассчитывают математическую модель поверхности, содержащую заданные точки и линии каркаса. Эту модель в дальнейшем используют для получения промежуточных точек и линий. Однако нужно иметь в виду, что точность результата во многом определяется выбранным классом моделирующих функций.

Графоаналитический способ. При этом способе задания поверхности часть линий (например, образующая поверхности) может задаваться аналитически в виде уравнения

где – параметры образующей, а направляющие линии задаются графически, в виде графиков изменения параметров  в зависимости от значения третьей координаты z (рис.9.4). Тогда при необходимости получения положения некоторой образующей для  определяют сначала значения параметров , которые затем подставляются в уравнение образующей.

Рис.9.4

4. Классификация поверхностей

  В учебных целях поверхности классифицируются по двум признакам: по виду образующей и по закону движения образующей линии (рис.9.5).

Рис.9.5

Научное обоснование методов начертательной геометрии произошло в семнадцатом веке в связи с начавшемся бурным развитием в Европе промышленности. Основоположником считается видный французский ученый и политический деятель Гаспар Монж (1746 - 1818 гг.). Его учение о ортогональном методе проецированная сохранилось до нашего времени .
Начертательная геометрия Задачи и примеры