Часы-браслет Pandora    + серьги Dior

Часы-браслет Pandora + серьги Dior

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Начертательная геометрия Поверхности второго порядка Аксонометрические изображения Позиционные задачи Способ концентрических сфер Метрические задачи Способ вращения Построить пересечение конуса и призмы

Проекции и их свойства

Учебная дисциплина «Начертательная геометрии и инженерная графика» даёт студентам знания, которые необходимы им для общения с техническими специалистами на специальном графическом языке. Дисциплина включает следующие разделы: начертательную геометрию, машиностроительное черчение (инженерную графику) и основы компьютерной графики.

В первом семестре изучается начертательная геометрия, представляющая собой раздел геометрии, в котором пространственные формы предметов действительного мира и соответствующие геометрические закономерности изучаются при помощи изображений на плоскости – чертежей. Чертеж при этом является инструментом, с помощью которого осуществляется непосредственное изучение геометрических форм предметов и выполняется решение пространственных задач. Не всякое изображение предмета на листе бумаги позволяет точно определить его геометрическую фигуру. Для того, чтобы чертеж был геометрически равноценным изображаемому предмету (а только в этом случае можно изучать сам предмет по его чертежу), он должен быть построен при помощи метода проецирования (от латинского слова ргоjесеге – бросать вперед). Поэтому чертежи, применяемые в начертательной геометрии и инженерной графике, носят название проекционных чертежей.

Среди требований, предъявляемых к чертежам, наиболее существенными являются:

наглядность – давать пространственное представление изображённого предмета;

обратимость – по чертежу можно однозначно воспроизвести форму и размеры изображённого предмета.

Перед начертательной геометрией стоят следующие основные задачи:

 разработка способов построения чертежей пространственных предметов на плоскости;

 изучение способов решения и исследования пространственных задач при помощи чертежей;

 развитие пространственного воображения.

В настоящее время чертежи используются практически во всех областях науки и техники. Ни одна, даже самая простая деталь не изготавливается без чертежа. «Чертеж является языком техники», – говорил один из создателей начертательной геометрии французский ученый и инженер Гаспар Монж (1746-1818). Причем этот язык является интернациональным, он понятен любому технически грамотному специалисту, независимо от того, на каком языке он говорит. Дополняя высказывание Монжа, профессор В.И.Курдюмов (1853-1904) – автор классического русского учебника начертательной геометрии – писал: «Если чертеж является языком техники, то начертательная геометрия служит грамматикой этого языка, так как она учит нас правильно читать чужие и излагать наши собственные мысли, пользуясь в качестве слов одними только линиями и точками, как элементами всякого изображения».

Нужно отметить, что начертательная геометрия и инженерная графика входит в число фундаментальных дисциплин, составляющих основу инженерного образования. Без знания начертательной геометрии и инженерной графики невозможно усвоение технических и специальных дисциплин на следующих курсах обучения.

Центральная проекция и её свойства

Как уже было отмечено выше, методом начертательной геометрии является метод проекций. Сущность этого метода рассмотрим на примере центральной проекции. Пусть дана некоторая плоскость П', которую назовем плоскостью проекций, и вне её точка S, называемая центром проекций. Для построения проекции некоторой точки А проводят через неё и центр проекций S прямую SА, называемую проецирующей прямой, а затем находят точку пересечения этой прямой с плоскостью П' – точку А'. Эта точка и называется центральной проекцией точки А на плоскость П' (рис.1.1). Таков метод центрального проецирования точек. Проецирование можно выполнить для любой точки пространства, за исключением точек, лежащих в плоскости, проходящей через центр проекций S и параллельной плоскости проекций П'. За проекции таких точек принято считать бесконечно удаленные точки плоскости П', которые называются несобственными точками плоскости (рис.1.2). И только для центра проекций S проекцию построить нельзя, т.к. проецирующая прямая при этом становится неопределенной.

Рис.1.1. Центральная проекция Рис.1.2

Если задана какая-либо геометрическая фигура, то проекцией этой фигуры будет являться совокупность проекций всех её точек (рис.1.3).

Рис.1.3

Свойства центральной проекции:

  проекцией точки является точка;

 проекцией прямой линии является прямая линия;

 проекцией точки, лежащей на некоторой прямой, является точка, лежащая на проекции данной прямой.

Метод центрального проецирования слишком сложен и в значительной степени искажает форму и размеры оригинала, т.к. не сохраняет параллельности прямых и отношения отрезков. Поэтому в технике этот метод не применяется, а используется лишь художниками при написании картин – метод перспективы (глаз человека устроен по типу центральной проекции).

3. Параллельная проекция и ее свойства

Параллельная проекция является частным случаем центральной, когда центр проекций S удален в бесконечность. При этом задается направление проецирования, параллельно которому проводятся проецирующие лучи. Пусть дана плоскость проекций П' и точка А (рис.1.4). Для построения проекции точки проведем через точку А проецирующую прямую параллельно заданному направлению проецирования S. Затем определим точку пересечения этой прямой с плоскостью П' – точку А′, которая называется параллельной проекцией точки А.

Рис.1.4. Параллельная проекция

Параллельная проекция кроме трех свойств центральной проекции обладает еще дополнительными свойствами:

проекциями параллельных прямых являются параллельные прямые;

отношение проекций отрезков, лежащих на параллельных прямых или на одной и той же прямой, равно отношению самих отрезков;

проекция фигуры не меняется при параллельном переносе плоскости проекций.

Эти свойства параллельной проекции обеспечивают более простое построение чертежа, меньше искажающего форму и размеры оригинала по сравнению с центральной проекцией. Так в связи с сохранением параллельности прямых параллельной проекцией параллелограмма является параллелограмм, а трапеции – тоже трапеция, в то время как в центральной проекции эти фигуры проецируются в четырехугольники произвольного вида.

В зависимости от величины угла, образованного направлением проецирования S с плоскостью проекций П', параллельная проекция подразделяется на ортогональную (прямоугольную), когда угол равен 90°, и косоугольную в остальных случаях.

В ортогональной проекции нетрудно установить соотношение между длиной натурального отрезка и длиной его проекции. Если отрезок АВ образует с плоскостью проекций угол a, то, проведя АВ*||А'В' (рис.1.5), получим из прямоугольного треугольника АВ*В: АВ*=АВсоs(a) или А'В'=АВсоs(a).

Рис.1.5

Ортогональная проекция получила наибольшее распространение в технических чертежах, т.к. она позволяет наиболее легко судить о размерах изображаемых предметов.

Рассмотренные выше методы проецирования однозначно решают прямую задачу – по данному оригиналу построить его проекционный чертеж. Однако обратная задача – по данному проекционному чертежу воспроизвести (реконструировать) оригинал – не решается однозначно. Эта задача допускает бесчисленное множество решений, т.к. точку А', например, можно считать проекцией любой точки проецирующей прямой, проходящей через А (рис.1.1, 1.4). Таким образом, рассмотренные проекционные чертежи не обладают свойством обратимости. Для получения обратимых чертежей нужно дополнить проекционный чертеж некоторыми данными. Существуют различные методы такого дополнения. В данном курсе мы будем рассматривать два вида обратимых чертежей, а именно, аксонометрические и комплексные чертежи в ортогональных проекциях.

В начертательной геометрии кривую линию часто рассматривают как траекторию описанную движущейся точкой. Кривая линия может быть плоской или пространственной. Все точки плоской кривой принадлежат некоторой плоскости. Кривую не лежащую всеми точками в одной плоскости называют пространственной. Из пространственных кривых в технике находят широкое применение винтовые линии. Винтовую линию можно рассматривать как результат перемещения точки по поверхности вращения .
Начертательная геометрия в конструкторской работе