Начертательная геометрия Поверхности второго порядка Аксонометрические изображения Позиционные задачи Способ концентрических сфер Метрические задачи Способ вращения Построить пересечение конуса и призмы

З а д а ч а 36. Построить линию пересечения двух плоскостей откоса дна котлована с бровками АВ и ВС. Уклон откосов i = 2:3, масштаб 1 : 200  (рис.37а).

Заданные прямые АВ и ВС являются горизонталями плоскостей откоса. Проводим масштаб уклона Ʃi перпендикулярно АВ с интервалом L , определённым из углового масштаба, Аналогично строим масштаб уклонов Гi. (рис.37б).

Строим горизонтали плоскостей откосов, Через точки пересечения горизонталей с одинаковыми отметками проводим линию пересечения плоскостей откосов BD.

Рис.  37

З а д а ч а 37. Определить линию пересечения плоскости, заданной масштабом уклонов Ʃi с конической поверхностью, определяемой вершиной S9 и проекцией образующей S9T3 (рис.38).

.

Рис. 38

Строим горизонтали плоскости Ʃ и дуги окружностей – горизонталей конической поверхности. Находим точки пересечения одноименных горизонталей и соединяем их плавной кривой, которая является искомой линией пересечения

З а д а ч а 38. Определить линию пересечения топографической поверхности с плоскостью заданной масштабом уклонов Ʃi (рис. 39).

Рис. 39

Решение сводится к определению точек пересечения горизонталей плоскости  и топографической поверхности, имеющих одинаковые отметки, которые соединяются между собой отрезками ломанной линии.

Ортогональный метод проецирования. Метод проецирования заключается в том, что любая точка пространства может быть спроецирована с помощью проецирующих лучей на любую поверхность. Ортогональное проецирование это такой метод когда проецирующие лучи параллельны между собой и перпендикулярны к плоскости проекций.
Начертательная геометрия в конструкторской работе