Часы-браслет Pandora    + серьги Dior

Часы-браслет Pandora + серьги Dior

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Начертательная геометрия Поверхности второго порядка Аксонометрические изображения Позиционные задачи Способ концентрических сфер Метрические задачи Способ вращения Построить пересечение конуса и призмы

З а д а ч а 26. Построить пересечение конуса и призмы (рис.27).

Призма занимает проецирующее положение по отношению к фронтальной плоскости проекций, поэтому фронтальная проекция искомой линии пересечения совпадает с вырожденной проекцией призмы в пределах очерка конуса.

Линия пересечения будет состоять из части эллипса и части окружности радиуса R .

Характерными точками будут  А , С , D и M , N для эллипса и 

M , N , K для окружности;

CD – малая ось эллипса;

M , N – точки излома;

K – крайняя правая точка окружности, определяющая радиус окружности R . Случайные точки – 1 , 2, 3 , 4 . Горизонтальные проекции точек определяем с помощью параллелей конуса.

Определяем видимость кривой, учитывая, что проекция линии пересечения видима, если она принадлежит видимой части одной и второй поверхности.

З а д а ч а 27. Построить развертку пирамиды SABC (рис.28).

Гранями пирамиды являются треугольники, для построения которых достаточно определить натуральные длины их сторон – ребер пирамиды.

Рис. 28

Основание пирамиды параллельно плоскости П1 , поэтому подлежат определению только натуральные величины боковых ребер пирамиды. Строим развертку боковой поверхности пирамиды, используя натуральные величины ребер. Для этого по трем сторонам строим контур одной грани, к ней пристраиваем следующую и т.д.

З а д а ч а 28.  Построить на развертке цилиндра линию, принадлежащую поверхности цилиндра (рис.29).

Строим развертку цилиндра – прямоугольник, у которого одна сторона – высота цилиндра, другая – длина окружности основания.

Выделяем образующие на поверхности цилиндра и наносим их на развертку.

Строим точки, лежащие на образующих и принадлежащие кривой.

Рис. 29

Ортогональный метод проецирования. Метод проецирования заключается в том, что любая точка пространства может быть спроецирована с помощью проецирующих лучей на любую поверхность. Ортогональное проецирование это такой метод когда проецирующие лучи параллельны между собой и перпендикулярны к плоскости проекций.
Начертательная геометрия в конструкторской работе