Начертательная геометрия Поверхности второго порядка Аксонометрические изображения Позиционные задачи Способ концентрических сфер Метрические задачи Способ вращения Построить пересечение конуса и призмы

З а д а ч а 21. Построить в прямоугольной изометрии сечение пирамиды фронтально проецирующей плоскостью. Пирамида задана своими ортогональными проекциями  (рис.22).

Рис. 22

Р е ш е н и е . Через точку О1 проводим прямые x , y, z , которые принимаем за оси натуральной системы координат (рис.29а).

Вычерчиваем аксонометрические оси координат с углами в 1200 между ними (рис.22б). По координатам, определенным непосредственным измерением ортогонального чертежа, строим аксонометрическую и вторичную горизонтальную проекции пирамиды. В нашем примере основание пирамиды АВСDЕ лежит на плоскости XOY, поэтому ее вторичная проекция совпадает с аксонометрической проекцией и обозначена А/ В/ С/ D/ E/ . Далее по координатам X и Y вершин сечения строим вторичную горизонтальную проекцию сечения 11/ , 21/ , 31/, 41/ , 51/ . Затем из точек 11 /, 21/, 31/ , 41/ , 51/ проводим проецирующие прямые, параллельные оси z/ , до пересечения с соответствующими ребрами пирамиды в точках 1/ , 2/ , 3/ , 4/ , 5/ . Соединяя найденные точки, получим фигуру сечения пирамиды фронтально-проецирующей плоскостью

Для решения задачи на построение линии пересечения двух фигур, одна из которых занимает проецирующее положение, достаточно выделить на чертеже уже имеющуюся проекцию линии пересечения, которая совпадает с вырожденной проекцией проецирующей фигуры.

Вторую проекцию линии пересечения надо построить, исходя из условия ее принадлежности фигуре, занимающей общее положение.

Для решения этой задачи необходимо знать решение задач 18, 19, 20, а также нижеследующие задачи.

З а д а ч а 22. Построить горизонтальную проекцию плоской линии, принадлежащей поверхности конуса (рис.23).

Определяем плоскую кривую. Так как плоскость, в которой находится кривая, параллельна образующей конуса, то кривая – п а р а б о л а . Строим характерные точки А , М , N , - они находятся на известных линиях поверхности.

 Рис. 23 

Случайные точки 1 , 2, 3 , 4 строим с помощью параллелей конуса (см. задачу  18).

З а д а ч а 23. Построить фронтальную проекцию плоской линии, принадлежащей поверхности конуса (рис.24).

Кривая – гипербола, т.к. расположена в плоскости, параллельной двум образующим конуса.

Строим характерные точки: А (вершина гиперболы); N , M – конечные точки гиперболы; Т – точка видимости фронтальной проекции линии.

Случайные точки строим с помощью параллелей конуса.

 Рис. 24 Рис. 25

З а д а ч а 24. Построить фронтальную проекцию плоской линии, принадлежащей поверхности сферы (рис.25).

Кривая – о к р у ж н о с т ь , которая проецируется на фронтальную плоскость проекций в эллипс, т.к. плоскость окружности наклонена к П2 . Характерные точки кривой - А , В и С , D (определяющие большую и малую оси эллипса), а также К и Т - точки видимости. Случайные точки - 1 , 2. Фронтальную проекцию точек строим с помощью окружностей, параллельных фронтальной плоскости.

З а д а ч а 25. Построить горизонтальную проекцию линии, принадлежащей поверхности пирамиды (рис.26).

Характерные точки К , Т , N , D , принадлежащие ребрам пирамиды, и М , R – крайняя левая и самая низкая.

 

 

 Рис. 26 Рис. 27

Горизонтальные проекции точек определяем с помощью прямых, параллельных основанию пирамиды.

Метод проецирования . Исходя из различных методов изображения начертательная геометрия содержит четыре основных раздела : - ортогональные проекции; - проекции с числовыми отметками; - аксонометрические проекции; - перспективные проекции.
Начертательная геометрия в конструкторской работе