Часы-браслет Pandora    + серьги Dior

Часы-браслет Pandora + серьги Dior

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Начертательная геометрия Поверхности второго порядка Аксонометрические изображения Позиционные задачи Способ концентрических сфер Метрические задачи Способ вращения Построить пересечение конуса и призмы

Способ вращения

Сущность этого способа заключается в том, что при неизменном положении плоскостей проекций изменяется положение заданных геометрических элементов относительно плоскостей проекций путем их вращения относительно вокруг некоторой оси до тех пор, пока эти элементы не займут частное положение в исходной системе плоскостей.

В качестве осей вращения удобнее всего выбирать проецирующие прямые или прямые уровня, т.к. при этом точки будут вращаться в плоскостях, параллельных или перпендикулярных плоскостям проекций.

39.1 При вращении вокруг горизонтально-проецирующей прямой i (рисунок 15-8) горизонтальная проекция точки А перемещается по окружности, а фронтальная – по прямой, перпендикулярной фронтальной проекции оси і (являющейся фронтальной проекцией плоскости вращения Г). При этом расстояние между горизонтальными проекциями двух точек А и В (рисунок 15-9) при их повороте на один и тот же угол ω остается неизменным (АВ=А1В1).

Аналогичные выводы можно сделать и при вращении вокруг фронтально-проецирующей прямой.

39.2 Если в качестве оси вращения взять линию уровня, то истинную величину плоской фигуры общего положения можно построить одним поворотом. На рисунке 15-10 построено изображение ∆АВС(А1В1С1) после поворота его вокруг горизонтали h(С,1) до положения, совмещенного с горизонтальной плоскостью уровня ГÎh. Так как горизонталь проходит через точку С, то последняя неподвижна при вращении треугольника. Нужно повернуть только точки А и В вокруг горизонтали до совмещения их с плоскостью Г.

Точка А вращается в горизонтально-проецирующей плоскости Б, перпендикулярной оси вращения. Центр вращения О точки А лежит на оси вращения. В момент, когда при вращении точка А окажется в плоскости Г (т.е. совместится с горизонтальной плоскостью уровня) ее горизонтальная проекция будет удалена от горизонтальной проекции оси вращения h на расстояние, равное истинной величине радиуса вращения RA точки А.

Натуральную величину RA можно построить (как гипотенузу) способом прямоугольного треугольника, катетами которого являются горизонтальная проекция радиуса АО и разность высот точек А и О.

Построив совмещенную с горизонтальной плоскостью проекцию точки А, легко достроить изображение всего треугольника А1В1С1 в совмещенном с плоскостью Г положении. Для этого используем неподвижную точку 1 и плоскость вращения точки В (Д^h).

Фронтальная проекция треугольника АВС выродится впрямую и совместится с проекцией плоскости совмещения Г.

Аналогичные действия выполняют при вращении плоской фигуры вокруг ее фронтали. Совмещение в этом случае ведется с фронтальной плоскостью уровня, проходящей через ось вращения – фронталь.

Метод проецирования . Исходя из различных методов изображения начертательная геометрия содержит четыре основных раздела : - ортогональные проекции; - проекции с числовыми отметками; - аксонометрические проекции; - перспективные проекции.
Начертательная геометрия в конструкторской работе