Часы-браслет Pandora    + серьги Dior

Часы-браслет Pandora + серьги Dior

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Начертательная геометрия Поверхности второго порядка Аксонометрические изображения Позиционные задачи Способ концентрических сфер Метрические задачи Способ вращения Построить пересечение конуса и призмы

Метрические задачи

Задачи, в которых решаются вопросы измерения отрезков и углов, определения натуральной формы плоских фигур и т.п., называются метрическими.

При решении этих задач необходимо знать условия перпендикулярности прямых, прямой и плоскости, двух плоскостей. Для выяснения этих условий требуется изучить свойства ортогональной проекции прямого угла.

Здесь могут быть два случая.

1. Если две стороны любого линейного угла (в том числе прямого) параллельны некоторой плоскости проекций, то на эту плоскость он проецируется без искажения (рисунок 13-1). Если АВ//П' и ВС//П', то ÐАВС=ÐА'В'С', как углы с соответственно параллельными сторонами: АВ//А'В' и BC//B'C'.

2. Если одна из сторон прямого угла параллельна плоскости проекций, а другая не перпендикулярна ей, то прямой угол на эту плоскость проецируется в виде прямого угла (рисунок 13-2). Докажем это.

Дано:ÐАВС=90°, .АВ//П', ВС#П'. Требуется доказать: ÐА'В'С'=90°.


 

Из условия ортогонального (прямоугольного) проецирования ВВ^П', а так как АВ//П', то ÐAВВ'=90°. Отсюда следует, что прямая AB^BВ' и ВС, которые лежат в проецирующей плоскости ВСС'В' и, следовательно, прямая A B^BСС'В'.

Но так как АВ//А'В', то и A'B'^ВСС'В'. Следовательно, А'В'^В'С', т.е.ÐA'B'С'=90º

Рассмотренные свойства ортогональной проекции прямого угла распространяются как на угол между пересекающимися прямыми, так и на угол между взаимно-перпендикулярными скрещивающимися прямыми.

Для суждения о перпендикулярности скрещивающихся прямых нужно через произвольно взятую точку пространства провести прямые, параллельные скрещивающимся прямым и по углу между этими прямыми делать вывод о взаимном положении данных скрещивающихся прямых.

< Итак: две взаимно-перпендикулярные прямые (пересекающиеся или скрещивающиеся) сохраняют свою перпендикулярность на комплексном чертеже только в том случае, если одна из них является линией уровня (горизонталью, фронталью), а другая не перпендикулярна плоскостям проекций (рисунок 13-3).

Рассмотрим ряд примеров на применение свойств ортогональной проекции прямого угла.


Пример 1.Определить расстояние от точки А до горизонтали h (рисунок 13-4).

 Расстояние от точки до прямой определяется перпендикуляром, опущенным из этой точки на прямую.

Горизонталь является одной из сторон прямого угла и, следовательно, прямой угол с ней будет сохраняться на виде сверху.

Решение начинаем с вида сверху. Построим здесь перпендикуляр к горизонтали, а затем на виде спереди, определяем его истинную величину (способом прямоугольного треугольника).

Пример 2. Через точку А провести прямую перпендикулярно фронтальной прямой f (рисунок 13-5).

Прямой угол с фронталью сохраняется на виде спереди, поэтому проводим на этом виде прямую n.

На виде сверху прямая n проводится произвольно, т.к. через точку в пространстве можно провести множество прямых перпендикулярных данной прямой.

 

 

Пример 3. Определить расстояние между параллельными горизонталями h1 и h2 (рисунок 13-6).

На виде сверху проводим общий перпендикуляр АВ к данным прямым.

Строим его на виде спереди, а затем определяем истинную величину отрезка АВ.

 

 

 

ПЕРПЕНДИКУЛЯРНОСТЬ ПРЯМОЙ И ПЛОСКОСТИ, ПЛОСКОСТЕЙ

34.1 Перпендикулярность прямой и плоскости

Если прямая перпендикулярна плоскости, то она перпендикулярна ко всякой прямой этой плоскости (рисунок 13-7а). На комплексном чертеже перпендикулярность будет сохраняться:

на виде спереди только с фронталью (рисунок 13-7б);

на виде сверху только с горизонталью этой плоскости.

Следовательно, если прямая n перпендикулярна плоскости, то на виде сверху она перпендикулярна к горизонтали (n^h), а на виде спереди к фронтали (n^f) этой плоскости.

Справедливо и обратное утверждение: если проекции прямой перпендикулярны одноимённым проекциям соответствующих линий уровня, то такая .прямая перпендикулярна этой плоскости.

Если прямая перпендикулярна к плоскости частного положения, то прямой угол с вырожденной проекцией сохраняется. Перпендикулярная прямая в этом случае является прямой уровня и, следовательно, проецируется без искажения на том виде, где прямой угол сохраняется.

Рассмотрим примеры построения прямой, перпендикулярной к плоскости и плоскости, перпендикулярной к прямой.

Пример 4. Определить расстояние от т. А до наклонной плоскости Б (рисунок 13-8).

Расстояние от точки до плоскости измеряется перпендикуляром, опущенным из точки на данную плоскость.

На виде спереди опускаем перпендикуляр из т. А на плоскость Б.

Это будет натуральная величина расстояния. На виде сверху прямая АК перпендикулярна линиям связи.

Пример 5. Определить расстояние от т. А до плоскости общего положения Б(a//b), (рисунок 13-9).

Проводим в плоскости Б произвольные горизонталь h и фронталь f.

Строим нормаль к плоскости Б, для чего на виде спереди проводим прямую n перпендикулярно к фронтали f, а на виде сверху перпендикулярно горизонтали h.

Определяем точку пересечения К прямой n с плоскостью Б, для чего строим на плоскости прямую t горизонтально-конкурирующую с прямой n.

Способом прямоугольного треугольника определяем натуральную величину перпендикуляра АК.

Пример 6. Через т.А провести плоскость Д, перпендикулярную прямой общего положения l (рисунок 13-10).

Плоскость Д задаем главными линиями этой плоскости -горизонталью и фронталью. Проводим их через т.А таким образом, чтобы они были перпендикулярны заданной прямой: горизонталь на виде сверху, фронталь - на виде спереди.

Полученная плоскость Д(h∩f) будет перпендикулярна прямой l.

 

 

34.2 Перпендикулярность плоскостей

Две плоскости перпендикулярны, если одна из них проходит через перпендикуляр к другой. Но через прямую линию (перпендикуляр) в пространстве можно провести множество плоскостей перпендикулярных данной.


Пример 7. Провести через т.А плоскость Б, перпендикулярную заданной плоскости Д(а//b), (рисунок 13-11).

Сначала проведем через т.А прямую n перпендикулярно плоскости Д, для чего на ней предварительно проводим горизонталь и фронталь.

Затем через т.А проводим произвольную прямую l.

Эти две прямые n и l задают одну из плоскостей перпендикулярных плоскости Д.


Пример 8. Определить, перпендикулярны ли данные плоскости Б(а//b)и Д(f∩h), (рисунок 13-12).

Из точки пересечения горизонтали h и фронтали f проводим прямую n перпендикулярно плоскости Б.

Проверим принадлежность прямой n плоскости Б. Если плоскости перпендикулярны, то нормаль n будет либо принадлежать, либо будет параллельна плоскости Б.

В нашем случае прямая n не принадлежит и не параллельна этой плоскости (о чем можно судить по расположению проекций n и t на видах), следовательно плоскость Б не перпендикулярна плоскости Д.


Пример 9. Через прямую l провести плоскость Д перпендикулярно плоскости Б (А, b) (рисунок 13-13).

На прямой l берем произвольную точку М и через неё проводим прямую n перпендикулярно плоскости Б. Пересекающиеся прямые l и n задают искомую плоскость.

 

 

 

 

 

 

 

 

 

В России начертательную геометрию впервые стали изучать с 1810 года в Институте корпуса инженеров путей сообщения (С-Петербург), а с 1830 года стали преподавать во всех высших учебных заведениях России. Первым русским ученым издавшим труд “Основания начертательной геометрии “ в 1821 году был профессор Р.А. Севастьянов.
Начертательная геометрия в конструкторской работе