Часы-браслет Pandora    + серьги Dior

Часы-браслет Pandora + серьги Dior

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Физические основы механики Закон сохранения импульса Принцип реактивного движения Кинетическая и потенциальная энергии Колебательное движение Волновые процессы Элементы релятивистической механики Вынужденные колебания и резонанс

 Закон сохранения импульса.

Рассмотрим общий случай - систему n взаимодействующих материальных точек (тел). На каждое тело действуют внутренние и внешние силы. Силы взаимодействия между телами системы называются внутренними, а силы, которые действуют со стороны тел, не входящих в рассматриваемую систему, называются внешними. Массы точек - m1, m2, ..., mn, скорости их движения - v1, v2,...,vn. Пусть - внутренние силы, действующие на первую точку со стороны второй, третьей и т.д. - внешние силы, действующие на первую, вторую и т.д. материальные точки (рис.2.3.).

Так как внутренние силы являются силами взаимодействия между телами, то они должны подчиняться третьему закону Ньютона .

Рис.2.3. Силы взаимодействия в системе n материальных точек.

Запишем II закон Ньютона для каждого из n тел:

. . . . . .

.

 

Если просуммировать эти уравнения по всем телам и учесть, что при двойном суммировании внутренних сил, согласно третьему закону Ньютона

 , то получаем , где , .

Если система замкнутая, т.е. на нее не действуют внешние силы, то , , т.е. .

Это выражение является законом сохранения импульса. Суммарный импульс замкнутой системы точек (тел) не меняется с течением времени.

Закон сохранения импульса находит широкое применение в природе и технике. Примером может служить явление отдачи ружья при выстреле пули. Выстрел производится в горизонтальном направлении (рис.2.4).

 

Подпись:                   Рис.2.4. Применение закона сохранения импульса к стрельбе из ружья.


  Систему ружье-пуля можно считать изолированной системой и к ней применим закон сохранения импульса: , m и v – масса и скорость пули, M и v0 – масса и скорость ружья. В начальный момент времени (до выстрела) система покоилась (v=v0=0), следовательно константа в уравнении равна нулю. Отсюда, соотношение скоростей v и v0 после выстрела, можно рассчитать из равенства , .

Т.к. m<<M, то v>>v0; знак «минус» указывает на противоположную направленность скоростей. Эксперименты доказывают, что закон сохранения импульса выполняется и для замкнутых систем микрочастиц, т.е. в квантовой механике. Таким образом, закон сохранения импульса универсален и является фундаментальным законом природы.

 Центр масс. Закон движения центра масс.

Центр масс (или центр инерции) системы материальных точек (тел) есть некоторая точка в пространстве С, положение которой характеризует распределение масс системы. Ее радиус-вектор равен : , где n – число точек (тел) системы, m1, m2…mn – их массы; - их радиусы-векторы; m – общая масса системы. Скорость центра масс

. Так как - импульс всей системы, то  или импульс системы  равен произведению массы системы на скорость ее центра масс.

 По II закону Ньютона . Отсюда , т.е. центр масс системы движется как материальная точка, в которой сосредоточена масса всей системы и на нее действует сила, равная геометрической сумме всех внешних сил, действующих на тела системы. Это есть закон движения центра масс. Если система замкнута, то  и .

Следовательно центр масс замкнутой системы движется прямолинейно и равномерно, либо остается неподвижным. Например, молоток вращается, а его центр масс движется прямолинейно и равномерно (рис.2.5).

 

 Рис.2.5. Свободно летящий молоток. Его центр инерции помечен крестиком.

Элементы релятивистской динамики Основы релятивистской механики. Постулаты специальной теории относительности. Преобразования Галилея и Лоренца. Относительность пространственных и временных промежутков. Релятивистский закон сложения скоростей. Релятивистский импульс. Взаимосвязь массы и энергии. Полная энергия частицы. Кинетическая энергия релятивистской частицы.
Лабораторная работа по физике Изучение движения маятника Максвела