Часы-браслет Pandora    + серьги Dior

Часы-браслет Pandora + серьги Dior

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Физика атома Цепная ядерная реакция деления Проблемы развития атомной энергетики Биологическое действие ионизирующих излучений Изучение космического излучения Квантовая механика Классификация элементарных частиц.

Биологическое действие ионизирующих излучений.

Основа физического воздействия ядерных излучений на живые организмы – ионизация атомов и молекул в клетках. Заряженные ионы, возникающие из нейтральных атомов и молекул, меняют химические процессы, происходящие в биологических клетках. Это приводит к неправильному функционированию клеток, в результате чего биологические системы могут начать развиваться не нормальным образом и даже погибнуть.

Многократно повторенные опыты показали, что небольшие дозы излучения, сравнимые с уровнем естественного фона, безвредны и даже стимулируют развитие растений. Сходные результаты получены и в опытах на животных. Безвредность малых доз облучения для человеческого организма подтверждается исследованием средней продолжительности жизни людей в зависимости от уровня естественного фона ионизирующей радиации. При облучении повышенными дозами могут возникнуть мутации клеток и биологические объекты приобретают новые свойства, это используется для выведения новых растений и животных. В медицине действие локального излучения используют для уничтожения больных клеток, например раковых клеток. Воздействие не локальных и больших доз излучения ведет к необратимым изменениям и гибели клеток, это соответствует таким болезням как лейкемия, рак и др.

Люди некоторых профессий подвергаются дополнительному радиоактивному облучению. Это врачи – рентгенологи, работники атомных электростанций, ученые и технический персонал, работающие в области ядерной физики и физики элементарных частиц, космонавты. Полностью устранить дополнительное действие ионизирующей радиации на их рабочих местах оказывается невозможным. Поэтому нужно знать допустимую границу дополнительной дозы облучения.

Биологическое влияние различных видов излучения на организмы животных и растений неодинаково. При одинаковой поглощенной дозе излучения 1Гр от альфа – частиц оказывается на живой организм примерно такое биологическое действие, как поглощенная доза 20 Гр рентгеновского или гамма – излучения. Различие биологического действия разных видов излучения характеризуются коэффициентом относительной биологической эффективности (ОБЭ), или коэффициентом качества k. Относительно биологическая активность для разных видов излучения принимает значения от 1 до 20. Для рентгеновского и гамма – излучения k=1, для тепловых нейтронов k=3, для нейтронов с кинетической энергией 0,5 МэВ k=10, с энергией 5 МэВ k=7.

Поглощенная доза D, умноженная на коэффициент качества k, характеризует биологическое действие поглощенной дозы и называется эквивалентной дозы и называется эквивалентной дозой H: Н=Dk. Единицей эквивалентной дозы в Си является зиверт (Зв). 1Зв равен эквивалентной дозе, при которой поглощенная доза равна 1Гр и коэффициент качества равен единице.

Оптика. Примеры выполнения контрольной, курсовой, лабораторной работы по физике

Предельно допустимой дозой (ПДД) облучения для лиц, профессионально связанных с использованием источником ионизирующей радиации, является 50 мЗв за год. Этот уровень облучения был принят за допустимый на том основании, что он близок к уровню естественного радиационного фона в некоторых местах на Земле и никаких отрицательных последствий для человека при действии таких доз не обнаружено. Санитарными нормами установлен допустимый уровень разового аварийного облучения для населения – 0,1 Зв. Это примерно равно дозе фонового облучения человека за всю жизнь. В качестве предельно допустимой дозы систематического облучения населения установлена эквивалентная доза облучения 5 мзв за год, т.е. 0,1 ПДД. За все время жизни человека (70 лет) допустимая доза облучения для населения составляет 5мЗв/год·70лет=350 мЗв=0,35Зв.

Элементарные частицы.

Свойства элементарных частиц. Гравитационное, электромагнитное, слабое и сильное взаимодействия.

Элементарными частицами называют мельчайшие неделимые частицы вещества, которые не имеют внутренней структуры или, точнее,  она еще не известна. Элементарные частицы могут вступать в реакции с другими частицами, при этом возникают новые частицы. Например, реакции взаимопревращения нейтрона  и протона   происходит с возникновением электрона , позитрона , нейтрино ν, антинейтрино ν~. Кроме электронов, протонов и нейтронов, которые входят в состав любого атома, в настоящее время известно около 400 элементарных частиц. Их открытие произошло в начале ХХ века физиками, которые заняты изучением фундаментальной структуры материи, и продолжается до настоящего момента при изучении результатов столкновений разных частиц, ускоренных до больших кинетических энергий. Основными характеристиками элементарных частиц являются: масса частицы, спин или собственный момент импульса, среднее время жизни, электрический заряд,

Когда говорят о массе частицы, имеют в виду ее массу покоя, поскольку эта масса не зависит от состояния движения. Электрон - самая легкая частица с ненулевой массой покоя. Протон и нейтрон тяжелее электрона почти в 2000 раз. А самая тяжелая из известных элементарных частиц Z-частица обладает массой в 200 000 раз больше массы электрона. Частица, имеющая нулевую массу покоя и движущаяся со скоростью света, называется фотоном. Масса покоя выражается обычно в единицах энергии в соответствии с соотношением Эйнштейна Е=mc2 и варьируется в пределах от нуля до 1010 эВ.

Важная характеристика частицы – спин (собственный момент импульса). Спин связан с симметрией частиц при вращении, измеряется в единицах h (постоянная Планка) и может иметь только дискретные (квантованные) значения, равные целому или полуцелому числу . Так, протон, нейтрон и электрон имеют спин 1/2, а спин фотона равен 1. Известны частицы со спином 0, 3/2 , 2. Частица со спином 0 при любом угле поворота выглядит одинаково. Частицы со спином 1 принимают тот же вид после полного оборота на 360° . Частица со спином 1/2 приобретает прежний вид после оборота на 720° и т.д. Частица со спином 2 принимает прежнее положение через пол-оборота. В зависимости от спина, все частицы делятся на две группы: бозоны - частицы со спинами 0, 1 и 2; фермионы - частицы с полуцелыми спинами.

Частицы характеризуются также временем жизни, так как они могут самопроизвольно распадаться и превращаться в другие. По этому свойству частицы делятся на стабильные и нестабильные. Стабильные частицы - это электрон, протон, фотон и нейтрино. Нейтрон стабилен, когда находится в ядре атома, а свободный нейтрон распадается примерно за 15 минут. Все остальные известные частицы – нестабильны, время их жизни колеблется от нескольких микросекунд до 10‑23с.

Электрический заряд элементарных частиц меняется в довольно узком диапазоне и всегда кратен фундаментальной единице заряда - заряду электрона. Некоторые частицы (фотон, нейтрино) вовсе не имеют заряда. Электрический заряд характеризует способность частиц участвовать в электромагнитном взаимодействии с другими частицами, он подчиняется закону сохранения, т.е. суммарный заряд системы ни при каких либо взаимопревращениях частиц не меняется.

Кроме этих характеристик имеется и более сложные ‑ лептонный заряд, барионный заряд, пространственная четность и др. Эти характеристики учитывают возможность частиц участвовать в разных типах взаимодействий и возможные варианты их взаимопревращений (реакций). Большую роль в физике элементарных частиц играют законы сохранения, устанавливающие равенство между определенными комбинациями величин, характеризующих начальное и конечное состояние системы. Арсенал законов сохранения в квантовой физике больше, чем в классической. Он пополнился законами сохранения различных специфических видов симметрии (пространственной, зарядовой), и законами сохранения различных зарядов (электрического, лептонного, барионного и др.).

 Как известно, все действующие в природе силы можно свести всего лишь к четырем фундаментальным взаимодействиям: гравитационному, электромагнитному, слабому ядерному и сильному ядерному. Именно эти взаимодействия, в конечном счете, отвечают за все изменения в мире, именно они являются источником всех преобразований и процессов. 

1. Гравитационное взаимодействие присуще всем элементарным частицам, имеющим ненулевую массу покоя, это взаимодействие действует на больших расстояниях, но оно самое слабое по величине и поэтому не влияет на процессы взаимопревращений элементарных частиц. Если бы размеры атома водорода определялись гравитацией, а не взаимодействием между электрическими зарядами, то низшая орбита электрона по размерам превосходила бы доступную наблюдению часть Вселенной. Гравитация является универсальным взаимодействием, так как каждая частица испытывает на себе действие гравитации и сама является источником гравитации. Поскольку каждая частица вещества вызывает гравитационное притяжение, гравитация возрастает по мере образования все больших скоплений вещества. Мы ощущаем гравитацию в повседневной жизни потому, что все атомы Земли сообща притягивают нас. И хотя действие гравитационного притяжения одного атома пренебрежимо мало, результирующая сила притяжения со стороны всех атомов может быть значительной. Гравитация - дальнодействующая  сила природы. Это означает, что, хотя интенсивность гравитационного взаимодействия убывает с расстоянием, оно распространяется в пространстве и может сказываться на весьма удаленных от источника телах. Благодаря дальнодействию гравитация не позволяет Вселенной развалиться на части: она удерживает планеты на орбитах, звезды в галактиках, галактики в скоплениях, скопления в Метагалактике.

2. Электромагнитное взаимодействие присуще элементарным частицам, имеющим отличный от нуля электрический заряд, оно также дальнодействующее, а по величине энергии взаимодействия на 36 порядков сильнее гравитационного. В течение долгого времени электрическое и магнитное взаимодействие изучались независимо друг от друга, но в середине XIX в. Дж. К. Максвелл, объединил электричество и магнетизм в единой теории электромагнетизма - первой единой теории поля. Вследствие дальнодействующего характера электрических и магнитных сил, их действие ощутимо на больших расстояниях от источника, например, магнитное поле Солнца заполняет всю Солнечную систему. Вследствие большой величины электромагнитного взаимодействия и наличия заряда у ядра атома и у его оболочки, именно это взаимодействие определяет структуру атомов и отвечает за подавляющее большинство физических и химических явлений и процессов.

3. Сильное ядерное взаимодействие является близкодействующими, оно действует между частицами только на расстояниях, сравнимыми с размерами ядра, а по величине оно больше гравитационного на 38 порядков. К представлению о существовании сильного взаимодействия физика пришла в ходе изучения структуры атомного ядра. Для объяснения стабильности ядер необходима была какая-то сила, которая могла бы удерживать протоны в ядре, не позволяя им разлетаться под действием электростатического отталкивания. Гравитация для этого слишком слаба, необходимо было новое взаимодействие, причем, более сильное, чем электромагнитное. Впоследствии оно было обнаружено. Выяснилось, что хотя по своей величине сильное взаимодействие существенно превосходит все остальные фундаментальные взаимодействия, но за пределами ядра оно не ощущается. Радиус действия новой силы оказался очень малым, сильное взаимодействие резко уменьшается на расстоянии превышающем примерно 10‑15м. Кроме того, выяснилось, что сильное взаимодействие испытывают не все частицы, его испытывают протоны и нейтроны, а электроны, нейтрино и фотоны не подвластны ему. Теоретическое объяснение природы сильного взаимодействия было разработано в начале 60-х годов, когда была предложена кварковая модель. В этой теории нейтроны и протоны рассматриваются как составные частицы, построенные из более элементарных частиц - кварков. Сильное взаимодействие, вследствие своей большой величины, является источником огромной энергии. Наиболее характерный пример энергии, объясняемой сильным взаимодействием, - это наше Солнце. В недрах Солнца и звезд непрерывно протекают термоядерные реакции и выделяется огромное количество энергии, переносимой на нашу Землю с помощью электромагнитного излучения. Человек тоже научился высвобождать энергию сильного взаимодействия с помощью ядерных реакторов на атомных электростанциях.

Слабое ядерное взаимодействие является близкодействующим, по величине оно больше гравитационного на 23 порядка. Слабое взаимодействие было обнаружено при изучении радиоактивности и бета-распада. Обнаружилось, что в этом распаде нарушается один из фундаментальных законов физики - закон сохранения энергии. Казалось, что в этом распаде часть энергии куда-то исчезала. Чтобы "спасти" закон сохранения энергии, Паули предположил, что вместе с электроном при бета-распаде должна вылетать еще одна частица ‑ нейтрино, она должна быть нейтральной и обладать высокой проникающей способностью, вследствие чего ее не удавалось наблюдать ранее. Исследования показали, что входящие в состав ядра нейтроны после освобождения из ядра через несколько минут распадаются на протон, электрон и нейтрино, т.е. вместо одной частицы появляются три новые. Анализ реакции привел к выводу, что известные силы не могут вызвать такой распад. Очевидно, он порождался какой-то иной силой. Взаимодействие, связанное с этой силой, назвали слабым взаимодействием, оно оказалось гораздо слабее электромагнитного, хотя и сильнее гравитационного. Радиус слабого взаимодействия оказался очень мал, уже на расстоянии большем 10-18м от источника оно исчезает. Поэтому данное взаимодействие сильно влияет только на процессы, возникающие при сближении элементарных частиц. Впоследствии выяснилось, что большинство элементарных частиц участвует в слабом взаимодействии. Теория  слабого взаимодействия была создана в конце б0-х годов С. Вайнбергом и А. Саламом.

Взаимодействие квантовой системы с излучением. Квантовая система в поле электромагнитной волны. Дипольное приближение. Вероятность перехода. Матричный элемент оператора дипольного момента. Понятие о правилах отбора. Разрешенные и запрещенные переходы. Спектральные серии (атомы водорода, гелия, щелочных металлов). Общие представления об электромагнитных переходах в многоэлектронном атоме. Правило Лапорта.
Лабораторные работы по физике