Информатика
Проектирование
Геометрия
Алгебра
Курсовой
Графика
Электротехника
Задачи

Сопромат

Лабораторные
Методика
Физика
Чертежи
Энергетика
Математика
Реактор

Опыт Штерна и Герлаха.

Пространственное квантование было продемонстрировано экспериментами с атомными пучками, выполненным О.Штерном и В.Герлахом в 1922 г. Для атома водорода пространственное квантование орбитального магнитного момента описывается формулой (2.14). Для более сложных многоэлектронных атомов эта формула несколько видоизменяется, однако и для таких атомов остается в силе основной вывод квантовой теории: проекция магнитного момента атома на направление внешнего магнитного поля может иметь только дискретные квантовые значения.

В опыте Штерна и Герлаха пространственное квантование для атомных систем демонстрируется следующим образом. Путем испарения в вакуумной печи серебра или другого металла получают газ, состоящий из возбужденных атомов. С помощью тонких щелей формируется узкий атомный пучок (рис.10), который пропускается через неоднородное магнитное поле с большим градиентом магнитной индукции B/z. Для создания такого магнитного поля используется магнит с ножевидным полюсным наконечником, вблизи которого на достаточно малом расстоянии пропускается атомный пучок. На атомы, пролетающие в зазоре магнита, вдоль направления магнитного поля действует сила Fz = mzB/z, обусловленная градиентом индукции неоднородного магнитного поля и зависящая от величины проекции магнитного момента атома на направление поля. Эта сила отклоняет движущийся атом в направлении оси z, причем за время пролета магнита движущийся атом отклоняется тем больше, чем больше величина проекции mz .

 

Рис.10. Схема опыта Штерна и Герлаха (А-источник атомов, Щ-щели для формирования узкого пучка, S, N-полюса магнита, С- стеклянная пластинка для оседания атомов).

 С позиций классической физики, магнитные моменты атомов вследствие их хаотичного теплового движения, при влете в магнитное поле могут иметь любое направление в пространстве. Это должно приводить к возможности различных отклонений атомов. В результате, атомы серебра, быстро пролетевшие через магнитное поле, должны были образовывать непрерывную зеркальную полосу в местах оседания на стеклянной пластинке. Если же, как предсказывает квантовая теория, имеет место пространственное квантование, и проекция магнитного момента атома принимает только определенные дискретные значения, то под действием силы Fz атомный пучок должен расщепиться на дискретное число пучков, которые, оседая на стеклянной пластинке, дают серию узких дискретных зеркальных полос, куда попадают атомы. Именно этот результат наблюдался в эксперименте. Таким образом, опыт Штерна и Герлаха подтвердил правильность выводов квантовой теории о наличии пространственного квантования магнитных моментов и моментов импульса атомов.

Пространственное распределение электрона в атоме водорода.

Графически вероятность нахождения электрона можно изобразить в виде облака, где более темные области соответствуют большей вероятности нахождения. «Размеры» и «форму» электронного облака в заданном состоянии атома можно вычислить. Для основного состояния атома водорода решение уравнения Шредингера дает

 , (2.6)

где φ(r) – волновая функция, зависящая только от расстояния r до центра атома, r1 – постоянная, совпадающая с радиусом первой Боровской орбиты. Следовательно, электронное облако в основном состоянии водорода сферически-симметрично, как показано на рисунке 11. Электронное облако только приблизительно характеризует размеры атома и движение электрона, так как согласно (2.15) вероятность обнаружения электрона не равна нулю для любой точки пространства. На рисунке 12 изображены электронные облака атома водорода в состояниях: n=2, l=1 и m=1, 0, -1 при наличии магнитного поля.


Рис. 11. Электронное облако атома водорода в основном состоянии n =1, l = 0.

 

 Рис. 12. Электронные облака атома водорода и прецессия моментов импульса в состояниях n = 2, l = 1 для m = 1, 0, -1

 

Если в этих состояниях определить наиболее вероятные расстояния электрона от ядра, то они будут равны радиусам соответствующих  Боровских орбит. Таким образом, хотя квантовая механика не использует представление о движении электрона по определенным траекториям, тем не менее, радиусам Боровских орбит и в этой теории можно придать определенный физический смысл.

Атом водорода по Бору. Модель атома Томсона. Опыты Резерфорда. Планетарная модель атома и проблема устойчивости атомов. Сериальные закономерности в спектре атома водорода. Комбинационный принцип. Квантование момента импульса. Постулаты Бора. Принцип соответствия. Экспериментальное доказательство дискретной структуры атомных уровней. Опыты Франка и Герца. Изотопический сдвиг атомных уровней, ? - атомы, позитроний. Водородоподобные ионы. Релятивистское обобщение модели Бора. Постоянная тонкой структуры

Курс электрических цепей