Оптика и строение атома. Элементы физика атома

Детали машин принципы проектирования
Основы конструирования
Начертательная геометрия
Аксонометрия и проекции
Теория радиосигналов
Расчет электротехнических цепей
Электротехника и электроника
Математика задачи
Математика функции
Линейная алгебра
Дифференциальные уравнения
Теория функции комплексного переменного
Решение задач типового задания из учебника Кузнецова
Математический анализ задачи
Вычислить интеграл
Решение рядов
Дифференциалы от функции нескольких переменных
Лабораторные физика
Физика атома
Цепная ядерная реакция деления
Проблемы развития атомной энергетики
Биологическое действие
ионизирующих излучений
Квантовая механика
Электромагнетизм
Закон полного тока для магнитного поля
Магнитное поле в веществе
Явление самоиндукции
Теория Максвелла для
электромагнитного поля
Физические основы механики
Закон сохранения импульса
Принцип реактивного движения
Кинетическая и потенциальная энергии
Колебательное движение
Волновые процессы
Изучение движения маятника Максвела
Молекулярная физика
Барометрическая формула
Второе начало термодинамики
Кинетическая теория газа
Поверхностноенатяжение жидкости
История искусства
Русское искусство
Античный театр Древней Греции
Театр эпохи Возрождения
Театр эпохи Возрождения
Балетный театр
История искусства средних веков
Романское искусство
Искусство Южной Италии
Готическое искусство
Оптика
Оптическая физика
Электричество
Постоянный ток
Быстрый реактор
Курсовой проект реактор ВВЭР
Курсовой проект «Электрическая часть
электростанций и подстанций»
Действие радиации на человека
и окружающую среду
Лабораторные работы по информатике
Информационные технологии
Технологии защиты информации

Руководство к лабораторным работам 315, 316 Экспериментальные данные о спектрах излучения

Строение атома водорода и элементарная теория излучения по Бору. В в 1911г. английский ученый Резерфорд предложил планетарную модель атома. Согласно этой модели атом построен по типу Солнечной системы - в центре атома в очень малой области (10-14 м) находится положительно заряженное ядро, в котором сосредоточена почти вся масса атома, а вокруг ядра под действием сил Кулоновского притяжения двигаются по замкнутым орбитам электроны (примерный радиус орбит -10-10м)

Уравнение Шредингера. Стационарные состояния атома. Для расчета волновой функции необходимо иметь уравнение, которое позволяло бы для любого момента времени определить эту функцию с учетом действующих на частицу внешних силовых полей. Чтобы искомое уравнение учитывало волновые свойства микрочастиц, необходимо чтобы оно по форме было волновым уравнением, подобно тем, которые описывают звуковые или электромагнитные волны.

Многоэлектронный атом. Правила распределения электронов по орбиталям. В многоэлектронных атомах вокруг положительно заряженного ядра двигается несколько электронов, их число равно порядковому номеру атома в таблице Менделеева. У многоэлектронных атомов система энергетических уровней усложняется. Это связано с тем, что каждый электрон в данном случае не только притягивается ядром, но и отталкивается другими электронами.

Лабораторная работа № 315 Исследование спектра неона с помощью стилоскопа СЛП-1 Качественное исследование видимой части спектра производится спектроскопами различного типа. Принцип действия этих приборов основан на явлении дисперсии света (зависимость показателя преломления от частоты или длины волны света) и законе преломления света на границе двух сред. В результате этого световые волны разных частот преломляются в призме под разными углами, что позволяет анализировать частотный состав исследуемого излучения

Лабораторная работа № 316 Исследование спектра атомов ртути с помлщью стилометра СТ-7 Стилометр представляет собой спектроскоп особой конструкции и предназначен для экспрессного качественного и количественного анализа состава сплавов металлов методом спектрального анализа. С его помощью можно в течение нескольких минут определить количественное содержание добавок в легированных сталях и в цветных металлах.

Руководство к лабораторной работе 320 Изучение космического излучения у поверхности Земли Цель работы: изучить космическое излучение, его проис­хождение, состав и свойства; методы регистрации космических лучей; измерить интенсивность космического излучения у поверхности Земли.

Методы регистрации элементарных частиц. Для наблюдения и регистрации заряженных частиц используются различные методы. Сцинтилляционный счетчик. Существуют вещества, которые отвечают вспышками света на пролет в них заряженной элементарной частицы. Такие вещества называются сцинтилляторами.

Основные положения квантовой механики Противоречия классической физики: особенности строения атома, линейчатые спектры атомов, дифракция электронов, дифракция нейтронов.

Гипотеза Луи-де-Бройля о корпускулярно-волновом дуализме свойств микрочастиц. Как известно, эксперименты с электромагнитными волнами показали, что в некоторых явлениях они проявляют свойства частиц (фотоэффект, эффект Комптона, тепловое излучение и др). Эти явления удалось описать, если предположить согласно теории Планка, что электромагнитное излучение является потоком частиц‑фотонов или квантов со следующими значениями энергии и импульса

Постулаты квантовой механики. Вероятностный характер движения частиц. Волновая функция, её статистический смысл. Задание состояния микрочастицы. Объяснить одновременное наличие корпускулярных и волновых свойств у микрочастиц удалось на основе идей Бора и Луи-де-Бройля в рамках новой теории, называемой волновой или квантовой механикой, созданной Гейзенбергом, Шредингером, Борном и многими другими учеными начала ХХ века. Квантовая механика базируется, как и любая другая физическая теория, на ряде постулатов. Основные постулаты можно представить упрощенно в следующем виде.

Частица в одномерной бесконечно глубокой потенциальной яме. Квантование энергии частицы. Объяснение туннельного эффекта. Гармонический осциллятор.

Физика атома. Электрон в атоме водорода. Энергетические уровни. Квантовые числа и их физический смысл. Квантово-механическая теория атома, построенная на уравнении Шредингера, гораздо совершеннее полу‑классичекой теории атома Бора, построенной на ряде постулатов. Она сохраняет некоторые аспекты старой теории – например, электроны могут находиться в атоме только в состояниях с определенной дискретной энергией; при переходе электрона из одного состояния в другое испускается (или поглощается) фотон. Но квантовая механика не просто дополняет теорию Бора, она рисует совершенно иную картину строения атома.

Опыт Штерна и Герлаха. Пространственное квантование было продемонстрировано экспериментами с атомными пучками, выполненным О.Штерном и В.Герлахом в 1922 г. Для атома водорода пространственное квантование орбитального магнитного момента описывается формулой (2.14). Для более сложных многоэлектронных атомов эта формула несколько видоизменяется, однако и для таких атомов остается в силе основной вывод квантовой теории: проекция магнитного момента атома на направление внешнего магнитного поля может иметь только дискретные квантовые значения.

Спин электрона. Из квантовой теории следует, что вследствие симметрии электронного облака механический и магнитный моменты атома, находящегося в основном, невозбужденном состоянии, равны нулю. Следовательно, если в опыте Штерна - Герлаха обеспечить условия, при которых в атомном пучке будут двигаться невозбужденные атомы, то такой атомный пучок не должен расщепляться магнитным полем. Однако эксперимент не подтвердил такой вывод квантовой теории. Пучок невозбужденных атомов серебра расщепился на два пучка, которые создали две узкие зеркальные полоски, сдвинутые симметрично вверх и вниз.

Элементарная квантовая теория испускания атомами электромагнитного излучения. Если атому сообщить дополнительную энергию, то он может перейти в возбужденное состояние (например, для водорода возможны переходы из состояния с n=1 в состояния с n = 2, 3, 4, … см. рис.15). Возбуждение атомов может инициироваться различными способами: за счет столкновений с элементарными частицами – ударное возбуждение, при столкновениях с атомами – тепловое возбуждение и, наконец, при поглощении атомами электромагнитного излучения.

Атомное ядро. Состав ядра. Характеристики ядра. Как было показано ранее, любой атом состоит из ядра и двигающихся вокруг него электронов. Атомное ядро состоит из протонов и нейтронов, обозначаемых символами p и n. Протон имеет массу в 1836 раз большую массы электрона и положительный заряд, равный заряду электрона. Нейтрон имеет массу близкую к массе протона, заряда у него нет. Обе эти частицы имеют одинаковый спин. Эти частицы часто называют нуклонами (т.е. ядерные частицы).

Два типа ядерной реакции. Энергия ядерной реакции. Процессы деления тяжелых ядер на более легкие и слияния легких ядер в более тяжелые называют ядерными реакциям (ядерная реакция деления и реакция синтеза ядер). В этих реакциях выделяется большое количество энергии, в настоящее время они осуществлены на практике и используются как в мирных, так и в военных целях.

Цепная ядерная реакция деления. Ядра обычно находятся в состоянии с наименьшей энергией, это состояние называется основным. При попадании частиц с большой кинетической энергией в ядро, оно переходит в возбужденное неустойчивое состояние и через некоторое время делится на два более устойчивых ядра. Явление деления тяжелых атомных ядер на два ядра было открыто Ганом и Штрассманом в 1939г. при изучении взаимодействия нейтронов различных энергий и ядер урана. В 1940 г. российские физики К.А.Петржак и Г.И. Флеров обнаружили самопроизвольное (спонтанное) деление ядер урана.

Проблемы развития атомной энергетики. При использовании энергии ядер в мирных целях возникают определенные проблемы. Первая заключается в необходимости защиты людей, обслуживающих ядерные энергетические установки, от вредного действия гамма – излучения и потоков нейтронов, возникающих при осуществлении ядерной реакции в активной зоне реактора.

Биологическое действие ионизирующих излучений. Основа физического воздействия ядерных излучений на живые организмы – ионизация атомов и молекул в клетках. Заряженные ионы, возникающие из нейтральных атомов и молекул, меняют химические процессы, происходящие в биологических клетках. Это приводит к неправильному функционированию клеток, в результате чего биологические системы могут начать развиваться не нормальным образом и даже погибнуть.

Классификация элементарных частиц. Физики выяснили, что главные свойства частицы определяются ее способностью (или неспособностью) участвовать в различных видах взаимодействия, поэтому классификация частиц строится с учетом именно этого фактора. Элементарные частицы принято условно делить на четыре класса: лептоны, мезоны, барионы и частицы‑переносчики взаимодействия.

Гипотеза Великого объединения всех видов взаимодействия. В 70-е ХХ века в естествознании было установлено, что электромагнитное и слабое взаимодействия, казалось бы весьма разные по своей природе, в действительности являются двумя разновидностями единого так называемого электрослабого взаимодействия. Теория электрослабого взаимодействия решающим образом повлияла на дальнейшее развитие физики элементарных частиц.

Начертательная геометрия в конструкторской работе