Часы-браслет Pandora    + серьги Dior

Часы-браслет Pandora + серьги Dior

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Математика лекции Линии и поверхности уровня Вычислить частные производные функции Криволинейные интегралы Задача о массе кривой Задача о работе плоского силового поля Найти предел Производная по направлению Движение в вязкой среде

Пример. Составить уравнения касательной и нормальной плоскости к линии, заданной уравнением  в точке t = p/2.

  Уравнения, описывающие кривую, по осям координат имеют вид:

x(t) = cost;  y(t) = sint; z(t) = ;

Находим значения функций и их производных в заданной точке:

x¢(t) = -sint; y¢(t) = cost; 

  x¢(p/2) = -1; y¢(p/2) = 0; z¢(p/2)=

 x(p/2) = 0; y(p/2) = 1; z(p/2)= p/2

 

это уравнение касательной.

Нормальная плоскость имеет уравнение:

Параметрическое задание функции

 Исследование и построение графика кривой, которая задана системой уравнений вида:

,

производится в общем то аналогично исследованию функции вида y = f(x).

 Находим производные:

Теперь можно найти производную . Далее находятся значения параметра t, при которых хотя бы одна из производных j¢(t) или y¢(t) равна нулю или не существует. Такие значения параметра t называются критическими.

 Для каждого интервала (t1, t2), (t2, t3), … , (tk-1, tk) находим соответствующий интервал (x1, x2), (x2, x3), … , (xk-1, xk) и определяем знак производной   на каждом из полученных интервалов, тем самым определяя промежутки возрастания и убывания функции.

 Далее находим вторую производную функции на каждом из интервалов и, определяя ее знак, находим направление выпуклости кривой в каждой точке.

 Для нахождения асимптот находим такие значения t, при приближении к которым или х или у стремится к бесконечности, и такие значения t, при приближении к которым и х и у стремится к бесконечности.

 В остальном исследование производится аналогичным также, как и исследование функции, заданной непосредственно.

  На практике исследование параметрически заданных функций осуществляется, например, при нахождении траектории движущегося объекта, где роль параметра t выполняет время.

 Ниже рассмотрим подробнее некоторые широко известные типы параметрически заданных кривых.

Производная функции, заданной параметрически

 Пусть

Предположим, что эти функции имеют производные и функция x = j(t) имеет обратную функцию t = Ф(х).

Тогда функция у = y(t) может быть рассмотрена как сложная функция y = y[Ф(х)].

т.к. Ф(х) – обратная функция, то

Окончательно получаем:

 Таким образом, можно находить производную функции, не находя непосредственной зависимости у от х.

 Пример. Найти производную функции

Способ 1: Выразим одну переменную через другую , тогда

Способ 2: Применим параметрическое задание данной кривой: .

x2 = a2cos2t; 

 

 Пример: Методами дифференциального исчисления исследовать функцию  и построить ее график.

1. Областью определения данной функции являются все действительные числа (-¥; ¥).

2. Функция является функцией общего вида в смысле четности и нечетности.

3. Точки пересечения с координатными осями: c осью Оу: x = 0; y = 1;

 с осью Ох: y = 0; x = 1;

4. Точки разрыва и асимптоты: Вертикальных асимптот нет.

Наклонные асимптоты: общее уравнение y = kx + b;

Итого: у = -х – наклонная асимптота.

5. Возрастание и убывание функции, точки экстремума.

. Видно, что у¢< 0 при любом х ¹ 0, следовательно, функция убывает на всей области определения и не имеет экстремумов. В точке х = 0 первая производная функции равна нулю, однако в этой точке убывание не сменяется на возрастание, следовательно, в точке х = 0 функция скорее всего имеет перегиб. Для нахождения точек перегиба, находим вторую производную функции.

 y¢¢ = 0 при х =0 и y¢¢ = ¥ при х = 1.

Точки (0,1) и (1,0) являются точками перегиба, т.к. y¢¢(1-h) < 0; y¢¢(1+h) >0; y¢¢(-h) > 0; y¢¢(h) < 0 для любого h > 0.

6. Построим график функции.

 Пример: Исследовать функцию  и построить ее график.

1. Областью определения функции являются все значения х, кроме х = 0.

2. Функция является функцией общего вида в смысле четности и нечетности.

3. Точки пересечения с координатными осями: c осью Ох: y = 0; x =

с осью Оу: x = 0; y – не существует.

4. Точка х = 0 является точкой разрыва , следовательно, прямая х = 0 является вертикальной асимптотой.

Наклонные асимптоты ищем в виде: y = kx + b.

Наклонная асимптота у = х.

5. Находим точки экстремума функции.

; y¢ = 0 при х = 2, у¢ = ¥ при х = 0.

y¢ > 0 при х Î (-¥, 0) – функция возрастает, 

y¢ < 0 при х Î (0, 2) – функция убывает,

у¢ > 0 при х Î (2, ¥) – функция возрастает.

Таким образом, точка (2, 3) является точкой минимума.

Для определения характера выпуклости/вогнутости функции находим вторую производную.

 > 0 при любом х ¹ 0, следовательно, функция, вогнутая на всей области определения.

6. Построим график функции.

Неотрицательные матрицы, положительные матрицы. Разложимые и неразложимые матрицы. Теорема Перрона - Фробениуса о наибольшем действительном положительном собственном значении. Круги Гершгорина и собственные значения матрицы. Граф матрицы. Стохастические матрицы. Обратно-симметричные матрицы, сильно-транзитивные матрицы. Методы определения разложимости и неразложимости матрицы. Алгебраические и итеративные методы нахождения собственного вектора, соответствующего наибольшему положительному собственному значению. Некоторые матрицы специального вида.
Математика лекции функции нескольких переменных