Математика лекции Линии и поверхности уровня Вычислить частные производные функции Криволинейные интегралы Задача о массе кривой Задача о работе плоского силового поля Найти предел Производная по направлению Движение в вязкой среде

Пример. Исследовать функцию и построить ее график.

Находим область существования функции. Очевидно, что областью определения функции является область (-¥; -1) È (-1; 1) È (1; ¥).

В свою очередь, видно, что прямые х = 1, х = -1 являются вертикальными асимптотами кривой.

Областью значений данной функции является интервал (-¥; ¥).

Точками разрыва функции являются точки х = 1, х = -1.

Находим критические точки.

Найдем производную функции

Критические точки: x = 0; x = -; x = ; x = -1; x = 1.

Найдем вторую производную функции

.

 Определим выпуклость и вогнутость кривой на промежутках.

-¥ < x < -, y¢¢ < 0, кривая выпуклая

- < x < -1, y¢¢ < 0, кривая выпуклая

-1 < x < 0, y¢¢ > 0, кривая вогнутая

 0 < x < 1, y¢¢ < 0, кривая выпуклая

 1 < x < , y¢¢ > 0, кривая вогнутая

  < x < ¥,  y¢¢ > 0, кривая вогнутая

Находим промежутки возрастания и убывания функции. Для этого определяем знаки производной функции на промежутках.

-¥ < x < -, y¢ > 0, функция возрастает

- < x < -1, y¢ < 0, функция убывает

-1 < x < 0, y¢ < 0, функция убывает

 0 < x < 1, y¢ < 0, функция убывает

 1 < x < , y¢ < 0, функция убывает

 < x < ¥,  y¢¢ > 0, функция возрастает

  Видно, что точка х = - является точкой максимума, а точка х =  является точкой минимума. Значения функции в этих точках равны соответственно -3/2 и 3/2.

 Про вертикальные асимптоты было уже сказано выше. Теперь найдем наклонные асимптоты.

 Итого, уравнение наклонной асимптоты – y = x.

Построим график функции:

Векторная функция скалярного аргумента

 z

 A(x, y, z)

  

 

 

 y

 х

 Пусть некоторая кривая в пространстве задана параметрически:

x = j(t);  y = y(t); z = f(t);

Радиус- вектор произвольной точки кривой: .

 Таким образом, радиус- вектор точки кривой может рассматриваться как некоторая векторная функция скалярного аргумента t. При изменении параметра t изменяется величина и направление вектора .

 Запишем соотношения для некоторой точки t0:

Тогда вектор  - предел функции (t). .

Очевидно, что

, тогда

.

 Чтобы найти производную векторной функции скалярного аргумента, рассмотрим приращение радиус- вектора при некотором приращении параметра t.

 


  

  

 

 

;

или, если существуют производные j¢(t), y¢(t), f¢(t), то

 Это выражение – вектор производная вектора .

Если имеется уравнение кривой:

x = j(t);  y = y(t); z = f(t);

то в произвольной точке кривой А(xА, yА, zА) с радиус- вектором

можно провести прямую с уравнением

Т.к. производная - вектор, направленный по касательной к кривой, то

.

Уравнение нормальной плоскости к кривой будет иметь вид:

Неотрицательные матрицы, положительные матрицы. Разложимые и неразложимые матрицы. Теорема Перрона - Фробениуса о наибольшем действительном положительном собственном значении. Круги Гершгорина и собственные значения матрицы. Граф матрицы. Стохастические матрицы. Обратно-симметричные матрицы, сильно-транзитивные матрицы. Методы определения разложимости и неразложимости матрицы. Алгебраические и итеративные методы нахождения собственного вектора, соответствующего наибольшему положительному собственному значению. Некоторые матрицы специального вида.
Математика лекции функции нескольких переменных