Часы-браслет Pandora    + серьги Dior

Часы-браслет Pandora + серьги Dior

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Математика лекции Линии и поверхности уровня Вычислить частные производные функции Криволинейные интегралы Задача о массе кривой Задача о работе плоского силового поля Найти предел Производная по направлению Движение в вязкой среде

Пример. Исследовать функцию и построить ее график.

Находим область существования функции. Очевидно, что областью определения функции является область (-¥; -1) È (-1; 1) È (1; ¥).

В свою очередь, видно, что прямые х = 1, х = -1 являются вертикальными асимптотами кривой.

Областью значений данной функции является интервал (-¥; ¥).

Точками разрыва функции являются точки х = 1, х = -1.

Находим критические точки.

Найдем производную функции

Критические точки: x = 0; x = -; x = ; x = -1; x = 1.

Найдем вторую производную функции

.

 Определим выпуклость и вогнутость кривой на промежутках.

-¥ < x < -, y¢¢ < 0, кривая выпуклая

- < x < -1, y¢¢ < 0, кривая выпуклая

-1 < x < 0, y¢¢ > 0, кривая вогнутая

 0 < x < 1, y¢¢ < 0, кривая выпуклая

 1 < x < , y¢¢ > 0, кривая вогнутая

  < x < ¥,  y¢¢ > 0, кривая вогнутая

Находим промежутки возрастания и убывания функции. Для этого определяем знаки производной функции на промежутках.

-¥ < x < -, y¢ > 0, функция возрастает

- < x < -1, y¢ < 0, функция убывает

-1 < x < 0, y¢ < 0, функция убывает

 0 < x < 1, y¢ < 0, функция убывает

 1 < x < , y¢ < 0, функция убывает

 < x < ¥,  y¢¢ > 0, функция возрастает

  Видно, что точка х = - является точкой максимума, а точка х =  является точкой минимума. Значения функции в этих точках равны соответственно -3/2 и 3/2.

 Про вертикальные асимптоты было уже сказано выше. Теперь найдем наклонные асимптоты.

 Итого, уравнение наклонной асимптоты – y = x.

Построим график функции:

Векторная функция скалярного аргумента

 z

 A(x, y, z)

  

 

 

 y

 х

 Пусть некоторая кривая в пространстве задана параметрически:

x = j(t);  y = y(t); z = f(t);

Радиус- вектор произвольной точки кривой: .

 Таким образом, радиус- вектор точки кривой может рассматриваться как некоторая векторная функция скалярного аргумента t. При изменении параметра t изменяется величина и направление вектора .

 Запишем соотношения для некоторой точки t0:

Тогда вектор  - предел функции (t). .

Очевидно, что

, тогда

.

 Чтобы найти производную векторной функции скалярного аргумента, рассмотрим приращение радиус- вектора при некотором приращении параметра t.

 


  

  

 

 

;

или, если существуют производные j¢(t), y¢(t), f¢(t), то

 Это выражение – вектор производная вектора .

Если имеется уравнение кривой:

x = j(t);  y = y(t); z = f(t);

то в произвольной точке кривой А(xА, yА, zА) с радиус- вектором

можно провести прямую с уравнением

Т.к. производная - вектор, направленный по касательной к кривой, то

.

Уравнение нормальной плоскости к кривой будет иметь вид:

Неотрицательные матрицы, положительные матрицы. Разложимые и неразложимые матрицы. Теорема Перрона - Фробениуса о наибольшем действительном положительном собственном значении. Круги Гершгорина и собственные значения матрицы. Граф матрицы. Стохастические матрицы. Обратно-симметричные матрицы, сильно-транзитивные матрицы. Методы определения разложимости и неразложимости матрицы. Алгебраические и итеративные методы нахождения собственного вектора, соответствующего наибольшему положительному собственному значению. Некоторые матрицы специального вида.
Математика лекции функции нескольких переменных