Математика лекции Линии и поверхности уровня Вычислить частные производные функции Криволинейные интегралы Задача о массе кривой Задача о работе плоского силового поля Найти предел Производная по направлению Движение в вязкой среде

Пример. Найти производную функции .

По полученной выше формуле получаем:

Производные этих функций:

Окончательно:

 

Производная обратных функций

 Пусть требуется найти производную функции у = f(x) при условии, что обратная ей функция x = g(y) имеет производную, отличную от нуля в соответствующей точке.

  Для решения этой задачи дифференцируем функцию x = g(y) по х:

т.к. g¢(y) ¹

т.е. производная обратной функции обратна по величине производной данной функции.

 Пример. Найти формулу для производной функции arctg.

 Функция arctg является функцией, обратной функции tg, т.е. ее производная может быть найдена следующим образом:

 Известно, что  

По приведенной выше формуле получаем:

Т.к.  то можно записать окончательную формулу для производной арктангенса:

 Таким образом получены все формулы для производных арксинуса, арккосинуса и других обратных функций, приведенных в таблице производных.

  Пример. Найти производную функции.

Сначала преобразуем данную функцию:

 Пример. Найти производную функции .

 Пример. Найти производную функции

 Пример. Найти производную функции

 Пример. Найти производную функции

Производные и дифференциалы высших порядков

  Пусть функция f(x)- дифференцируема на некотором интервале. Тогда, дифференцируя ее, получаем первую производную

 Если найти производную функции f¢(x), получим вторую производную функции f(x).

т.е. y¢¢ = (y¢)¢ или .

Этот процесс можно продолжить и далее, находя производные степени n.

.

Общие правила нахождения высших производных

  Если функции u = f(x) и v = g(x) дифференцируемы, то

(Сu)(n) = Cu(n);

(u ± v)(n) = u(n) ± v(n);

3)

.

 Это выражение называется формулой Лейбница.

Также по формуле dny = f(n)(x)dxn может быть найден дифференциал n- го порядка.

Неотрицательные матрицы, положительные матрицы. Разложимые и неразложимые матрицы. Теорема Перрона - Фробениуса о наибольшем действительном положительном собственном значении. Круги Гершгорина и собственные значения матрицы. Граф матрицы. Стохастические матрицы. Обратно-симметричные матрицы, сильно-транзитивные матрицы. Методы определения разложимости и неразложимости матрицы. Алгебраические и итеративные методы нахождения собственного вектора, соответствующего наибольшему положительному собственному значению. Некоторые матрицы специального вида.
Математика лекции функции нескольких переменных