Математика лекции Линии и поверхности уровня Вычислить частные производные функции Криволинейные интегралы Задача о массе кривой Задача о работе плоского силового поля Найти предел Производная по направлению Движение в вязкой среде

Пример. Задано линейное преобразование А, переводящее вектор в вектор   и линейное преобразование В, переводящее вектор  в вектор . Найти матрицу линейного преобразования, переводящего вектор  в вектор .

С = В×А

Т.е.

 Примечание: Если ïАï= 0, то преобразование вырожденное, т.е., например, плоскость преобразуется не в целую плоскость, а в прямую.

Собственные значения и собственные векторы

линейного преобразования

 

  Определение: Пусть L – заданное n- мерное линейное пространство. Ненулевой вектор L называется собственным вектором линейного преобразования А, если существует такое число l, что выполняется равенство:

A.

При этом число l называется собственным значением (характеристическим числом) линейного преобразования А, соответствующего вектору .

Определение: Если линейное преобразование А в некотором базисе ,,…, имеет матрицу А = , то собственные значения линейного преобразования А можно найти как корни l1, l2, … ,ln уравнения:

 Это уравнение называется характеристическим уравнением, а его левая часть- характеристическим многочленом линейного преобразования А.

Пример. Найти характеристические числа и собственные векторы линейного преобразования с матрицей А = .

Запишем линейное преобразование в виде:

Составим характеристическое уравнение:

l2 - 8l + 7 = 0;

Корни характеристического уравнения: l1 = 7; l2 = 1;

  Для корня l1 = 7:

Из системы получается зависимость: x1 – 2x2 = 0. Собственные векторы для первого корня характеристического уравнения имеют координаты: (t; 0,5t) где t- параметр.

  Для корня l2 = 1:

Из системы получается зависимость: x1 + x2 = 0. Собственные векторы для второго корня характеристического уравнения имеют координаты: (t; -t) где t- параметр.

  Полученные собственные векторы можно записать в виде:

Пример. Найти характеристические числа и собственные векторы линейного преобразования А, матрица линейного преобразования А = .

 Составим характеристическое уравнение:

(1 - l)((5 - l)(1 - l) - 1) - (1 - l - 3) + 3(1 - 15 + 3l) = 0

(1 - l)(5 - 5l - l + l2 - 1) + 2 + l - 42 + 9l = 0

(1 - l)(4 - 6l + l2) + 10l - 40 = 0

4 - 6l + l2 - 4l + 6l2 - l3 + 10l - 40 = 0

-l3 + 7l2 – 36 = 0

-l3 + 9l2 - 2l2 – 36 = 0

-l2(l + 2) + 9(l2 – 4) = 0

(l + 2)(-l2 + 9l - 18) = 0

Собственные значения: l1 = -2; l2 = 3; l3 = 6;

1) Для l1 = -2: 

Если принять х1 = 1, то Þ х2 = 0;  x3 = -1;

Собственные векторы: 

2) Для l2 = 3: 

Если принять х1 = 1, то Þ х2 = -1;  x3 = 1;

Собственные векторы: 

3) Для l3 = 6: 

Если принять х1 = 1, то Þ х2 = 2;  x3 = 1;

Собственные векторы: 

Введение в математический анализ 

Предел функции в точке

 y f(x)

 

 A + e

 A

 A - e

 0 a - D a a + D  x

 Пусть функция f(x) определена в некоторой окрестности точки х = а (т.е. в самой точке х = а функция может быть и не определена)

 Определение. Число А называется пределом функции f(x) при х®а, если для любого e>0 существует такое число D>0, что для всех х таких, что

0 < ïx - aï < D

верно неравенство ïf(x) - Aï< e.

 То же определение может быть записано в другом виде:

Если а - D < x < a + D, x ¹ a, то верно неравенство А - e < f(x) < A + e.

Запись предела функции в точке:

Предел функции при стремлении аргумента к бесконечности

 Определение. Число А называется пределом функции f(x) при х®¥, если для любого числа e>0 существует такое число М>0, что для всех х, ïхï>M выполняется неравенство

При этом предполагается, что функция f(x) определена в окрестности бесконечности.

Записывают:  

 

Аналогично можно определить пределы  для любого х>M и

 для любого х<M.

Основные теоремы о пределах

  Теорема 1. , где С = const.

 Следующие теоремы справедливы при предположении, что функции f(x) и g(x) имеют конечные пределы при х®а.

  Теорема 2.

Доказательство этой теоремы будет приведено ниже.

  Теорема 3.

 Следствие.

 Теорема 4.  при

 Теорема 5. Если f(x)>0 вблизи точки х = а и , то А>0.

Аналогично определяется знак предела при f(x) < 0, f(x) ³ 0, f(x) £ 0.

 Теорема 6. Если g(x) £ f(x) £ u(x) вблизи точки х = а и , то и .

Комплексные числа и многочлены. Изображение комплексных чисел на плоскости. Модуль и аргумент комплексного числа. Алгебраическая и тригонометрическая формы комплексного числа. Формула Эйлера. Корни из комплексных чисел. Многочлены, разложение многочленов на множители, деление многочленов, теорема Безу о виде остатка.
Математика лекции функции нескольких переменных