Математика лекции Линии и поверхности уровня Вычислить частные производные функции Криволинейные интегралы Задача о массе кривой Задача о работе плоского силового поля Найти предел Производная по направлению Движение в вязкой среде

Пример. Найти уравнение плоскости, зная, что точка Р(4, -3, 12) – основание перпендикуляра, опущенного из начала координат на эту плоскость.

  Находим координаты вектора нормали = (4, -3, 12). Искомое уравнение плоскости имеет вид: 4x – 3y + 12z + D = 0. Для нахождения коэффициента D подставим в уравнение координаты точки Р:

16 + 9 + 144 + D = 0

D = -169

 Итого, получаем искомое уравнение: 4x – 3y + 12z – 169 = 0

Пример. Даны координаты вершин пирамиды А1(1; 0; 3), A2(2; -1; 3), A3(2; 1; 1),

A4(1; 2; 5).

Найти длину ребра А1А2.

Найти угол между ребрами А1А2 и А1А4.

 

Найти угол между ребром А1А4 и гранью А1А2А3.

Сначала найдем вектор нормали к грани А1А2А3  как векторное произведение векторов и.

= (2-1; 1-0; 1-3) = (1; 1; -2);

 Найдем угол между вектором нормали и вектором .

-4 – 4 = -8.

Искомый угол g между вектором и плоскостью будет равен g = 900 - b.

Найти площадь грани А1А2А3.

Найти объем пирамиды.

 (ед3).

Найти уравнение плоскости А1А2А3.

Воспользуемся формулой уравнения плоскости, проходящей через три точки.

2x + 2y + 2z – 8 = 0

x + y + z – 4 = 0;

Полярная система координат

 Определение. Точка О называется полюсом, а луч l – полярной осью.

 Суть задания какой- либо системы координат на плоскости состоит в том, чтобы каждой точке плоскости поставить в соответствие пару действительных чисел, определяющих положение этой точки на плоскости. В случае полярной системы координат роль этих чисел играют расстояние точки от полюса и угол между полярной осью и радиус– вектором этой точки. Этот угол j называется полярным углом.

установить связь между полярной системой координат и декартовой прямоугольной системой, если поместить начало декартовой прямоугольной системы в полюс, а полярную ось направить вдоль положительного направления оси Ох.

 Тогда координаты произвольной точки в двух различных системах координат связываются соотношениями:

x = rcosj; y = rsinj;  x2 + y2 = r2

Пример. Уравнение кривой в полярной системе координат имеет вид:

. Найти уравнение кривой в декартовой прямоугольной системе координат, определит тип кривой, найти фокусы и эксцентриситет. Схематично построить кривую.

 Воспользуемся связью декартовой прямоугольной и полярной системы координат: ;

 Получили каноническое уравнение эллипса. Из уравнения видно, что центр эллипса сдвинут вдоль оси Ох на 1/2 вправо, большая полуось a равна 3/2, меньшая полуось b равна , половина расстояния между фокусами равно с = = 1/2. Эксцентриситет равен е = с/a = 1/3. Фокусы F1(0; 0) и F2(1; 0).

 y

 

 F1 F2

 -1 0 ½ 1 2 x

 -

 Пример. Уравнение кривой в полярной системе координат имеет вид:

. Найти уравнение кривой в декартовой прямоугольной системе координат, определит тип кривой, найти фокусы и эксцентриситет. Схематично построить кривую.

 Подставим в заданное уравнение формулы, связывающие полярную и декартову прямоугольную системы координат.

 Получили каноническое уравнение гиперболы. Из уравнения видно, что гипербола сдвинута вдоль оси Ох на 5 влево, большая полуось а равна 4, меньшая полуось b равна 3, откуда получаем c2 = a2 + b2 ; c = 5; e = c/a = 5/4.

 Фокусы F1(-10; 0), F2(0; 0).

 Построим график этой гиперболы.

 


 y

 3

 F1 -9 -5 -1 0 F2  x

 -3

Комплексные числа и многочлены. Изображение комплексных чисел на плоскости. Модуль и аргумент комплексного числа. Алгебраическая и тригонометрическая формы комплексного числа. Формула Эйлера. Корни из комплексных чисел. Многочлены, разложение многочленов на множители, деление многочленов, теорема Безу о виде остатка.
Математика лекции функции нескольких переменных