Информатика
Проектирование
Геометрия
Алгебра
Курсовой
Графика
Электротехника
Задачи

Сопромат

Лабораторные
Методика
Физика
Чертежи
Энергетика
Математика
Реактор

Дифференцирование сложной ФНП

Сложная ФНП, как и сложная функция одного переменного, есть суперпозиция двух или нескольких функций. Например, сложная функция , определенная на множестве , понимается как суперпозиция "внешней" функции  и "внутренних" функций , , определенных на множестве . При этом множество значений

совпадает с областью определения функции . Переменные ,  называем независимыми; ,  – промежуточными.

Число независимых и промежуточных переменных может быть различным.

Рассмотрим теорему о дифференцируемости сложной функции , . Ее доказательство и формула производной сложной функции может быть распространена на другие
виды сложной ФНП.

ТЕОРЕМА. Если

функция ,   – дифференцируемая в точке , , т.е. , причем ;

функция ,  – дифференцируемая в точке , , т.е. , причем ;

функция , , где

  – дифференцируемая в точке , где , ,
т.е. , где , причем ,

то сложная функция  дифференцируема
в точке .

Доказательство. Пусть , . Тогда
последовательно имеем

, где , , т.е. ;

аналогично .

Используя условие теоремы, можно записать

, поскольку

.

Здесь  в силу дифференцируемости функций ,  и  по условиям теоремы.

Заметим, что число

  –

производная рассматриваемой сложной функции  в точке .

Для вычисления производных сложной функции в общем случае нужно: 1) сложную функцию дифференцировать по независимым
переменным; 2) установить число независимых переменных (что
соответствует количеству возможных частных производных первого порядка сложной функции); 3) определить число промежуточных переменных (т.е. количество слагаемых в формуле для значения
каждой частной производной сложной функции).

Производная сложной ФНП по независимому переменному равна сумме произведений производной внешней функции по каждому из промежуточных переменных, умноженной на производную этого промежуточного переменного по соответствующему независимому аргументу.

Прежде чем вычислять производную сложной функции, рекомендуется сначала написать формулу в общем виде, а затем
подставить конкретные функции. Например, , где  – сложная функция,  имеет один независимый аргумент  и два промежуточных аргумента  и , поэтому производная сложной функции по ее независимому аргументу имеет вид  или ; обращаем внимание на
различие знаков   и .

ПРИМЕР. Написать формулы для производных сложных функций:

а) , ; б) , , ;

в) , , , , .

Ответ. а) промежуточная переменная –  (одна!), независимые
переменные –   (три!), поэтому имеем для сложной функции  формулы вычисления частных производных: ; ; ;

б) для сложной функции  один независимый аргумент – ; три промежуточных аргумента – . Поэтому
полная производная сложной функции по  вычисляется по формуле ;

в) аналогично имеем

.

В рассмотренных примерах предполагается, что в окончательный результат подставлены значения промежуточных переменных через независимые аргументы.

ЗАДАНИЕ для САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

Вычислить производные сложных функций:

1) , , , ;

2) , , ;

3) , , ;

4) , , .

Ответ. 1) ;

2)

3) ;

4) , ,  ищем

. Далее
следует подставить значения ;  и преобразовать выражение; производная сложной функции  есть функция от .

Дифференциальное исчисление функции одной переменной Понятие производной Рассмотрим задачу, которая приводит к понятию производной. Пусть функция u(t) выражает количество произведенной продукции за время t. Найдем производительность труда в момент t0. За период от t0 до t0+D t количество продукции изменится от u(t0) до u0+D u = u(t0+D t). Тогда средняя производительность труда за этот период z = D u/D t, поэтому производительность труда в момент t0 z = limD t® 0D u/D t. Определение 1(производная). Производной функции y = f(x) в фиксированной точке x называется предел limD x® 0D y/D x при условии существования этого предела.

Курс электрических цепей