Информатика
Проектирование
Геометрия
Алгебра
Курсовой
Графика
Электротехника
Задачи

Сопромат

Лабораторные
Методика
Физика
Чертежи
Энергетика
Математика
Реактор

ЗАДАНИЕ 13. Вычислить работу силы  при перемещении единичной массы вдоль кривой линии пересечения двух поверхностей:  от точки  до точки 

РЕШЕНИЕ.

Работа силы по перемещению материальной точки единичной массы есть линейный интеграл вдоль дуги  от точки  до точки 

.

Последний интеграл есть криволинейный интеграл второго рода по пространственной кривой .  Его вычисление сводится к вычислению определенного интеграла, для чего кривую  надо представить в параметрической форме (условием задачи кривая  задана в виде линии пересечения поверхности кругового цилиндра  с плоскостью , см. рис.81).

Параметризацию кривой удобно провести следующим образом: зададим ; тогда из уравнения цилиндра найдем, что  и из уравнения плоскости, что . Итак,

.

Найдем значения параметра , соответствующие точкам  и 

,  откуда 

,  откуда .

Рис.81

Для работы получим

=

=

=

Ответ. Работа равна .

ЗАДАНИЕ 16. Вычислить расходимость (дивергенцию) и вихрь (ротор) в произвольной точке ,  а также найти уравнения векторных линий поля градиентов скалярного поля .

РЕШЕНИЕ.

1. По заданному скалярному полю  построим поле его градиентов

.

Дивергенция (расходимость) векторного поля  в декартовой системе координат вычисляется по формуле

и для поля  получим

.

Убедимся, что  (т.е. что поле градиентов – безвихревое поле);  вычисляется как символический определитель третьего порядка

 .

Для поля градиентов

2. Уравнение векторных линий поля  определяется системой дифференциальных уравнений, которая в симметрической форме имеет вид

.

Запишем эту систему для заданного поля :

.

Ответ.  .

ЗАДАНИЕ 20. Убедиться в потенциальности поля вектора

,

найти потенциал  поля и вычислить работу этого поля при перемещении точки единичной массы от точки  до точки .

РЕШЕНИЕ.

Для поля , заданного в односвязной области, критерием потенциальности служит равенство нулю вихря этого поля. Вычислим:

, т.е. поле потенциально. Восстановим потенциал поля. Это можно сделать по формуле

или по одной из аналогичных ей пяти формул, отражающих движение от точки   к точке  вдоль отрезков, параллельных осям координат, по той, которая упрощает вычисление интегралов. По приведенной выше формуле получим

=

.

Потенциал поля определяется с точностью до постоянной. В потенциальном поле работа равна приращению потенциала, т.е. разности значений потенциала в двух точках и не зависит от формы пути перемещения материальной точки:

.

Ответ. .

Основные теоремы дифференциального исчисленияРассмотрим ряд важных теорем, которые полезны при исследовании функции. Справедлива Теорема Ролля. Пусть функция f(x) непрерывна на [a,b] и дифференцируема на (a,b) , f(a) = f(b). Тогда внутри отрезка существует по крайней мере одна точка c, такая, что f(c) = 0. Доказательство. Известно, что непрерывная на отрезке функция достигает своего наибольшего и наименьшего значений. Если оба значения достигаются на концах отрезка, то они равны по условию, а это означает, что функция тождественно постоянна на [a,b]. Тогда производная такой функции равна нулю. Если же хотя бы одно из значений - максимальное или минимальное - достигается внутри отрезка, то производная равна нулю в силу теоремы Ферма.

Курс электрических цепей