Электромагнетизм Закон полного тока для магнитного поля Магнитное поле в веществе Явление самоиндукции Теория Максвелла для электромагнитного поля Антиферромагнетики и ферриты Изучение свойств ферромагнетиков

УРАВНЕНИЯ МАКСВЕЛЛА.

Теория Максвелла для электромагнитного поля.

 В 60-х годах XIX столетия Д.К. Максвелл, ознакомившись с работами Фарадея, решил придать теории электричества и магнетизма математическую форму. Обобщив законы, установленные экспериментальным путем – закон полного тока, закон электромагнитной индукции и теорему Остроградского-Гаусса, - Максвелл дал полную картину электромагнитного поля. В теории Максвелла решается основная задача электродинамики – установление характеристик электромагнитного поля заданной системы электрических зарядов и токов, т.е. определение напряженности электрического поля Е и индукции магнитного поля В при известных величинах зарядов и токов, создающих эти поля. Необходимо отметить, что в своих выводах Максвелл не мог воспользоваться теорией относительности, так как она появилась лишь спустя 50 лет. Не были изучены электрические свойства веществ, не была установлена связь электромагнетизма и света. Другими словами, многие из доводов, которыми пользуемся мы сейчас при теоретическом обобщении результатов, были немыслимы во времена Максвелла.

Данная теория явилась величайшим вкладом в развитие классической физики. Она позволила с единой точки зрения охватить огромный круг явлений, начиная от электростатического поля неподвижных зарядов и кончая электромагнитной природой света. В этой теории не рассматривается молекулярное строение среды и внутренний механизм процессов, происходящих в веществе, находящемся в электромагнитном поле. Теория Максвелла – макроскопическая, в ней рассматриваются электромагнитные поля таких зарядов и токов, пространственная протяженность которых неизмеримо больше размеров атомов и молекул.

Электрические и магнитные свойства среды в теории Максвелла характеризуются тремя величинами: относительной диэлектрической проницаемостью ε, относительной магнитной проницаемостью μ и удельной электрической проводимостью γ. Предполагается, что эти параметры среды известны из опыта.

Данная теория представлена в виде системы четырех уравнений, называемых уравнениями Максвелла. Эти уравнения принято записывать в дифференциальной и интегральной форме. Уравнения в дифференциальной форме показывают, как связаны между собой характеристики электромагнитного поля и плотности электрических зарядов и токов в каждой точке этого поля. В данном разделе рассмотрены только уравнения Максвелла в интегральной форме – они содержат соотношения, справедливые для мысленно проведенных в электромагнитном поле неподвижных замкнутых контуров и поверхностей.

Первое уравнение Максвелла.

При рассмотрении неподвижного контура, находящегося в переменном магнитном поле, было установлено, что в нем появляется э.д.с. индукции .

С другой стороны, появление э.д.с., по определению, связано с работой сторонних сил неэлектростатического происхождения, и . Таким образом, можно записать

.

Под действием переменного магнитного поля в контуре возникает электрическое поле . Различие между этим полем и электростатическим заключается в том, что циркуляция вектора напряженности электростатического поля   вдоль замкнутого контура равна нулю, а циркуляция  по замкнутому контуру не равна нулю. Данное электрическое поле имеет непрерывные силовые линии, т.е. является вихревым. Оно вызывает в контуре направленное движение электронов по замкнутым траекториям. Таким образом, всякое изменение магнитного поля вызывает в окружающем пространстве появление вихревого электрического поля.

Воспользуемся выражением для магнитного потока:

Если поверхность S, которую пронзает магнитный поток, и ограничивающий ее электрический контур L неподвижны, то операции интегрирования по поверхности и дифференцирования по времени можно поменять местами. После этого мы получаем

.

В связи с тем, что вектор В зависит в общем случае как от времени, так и от координат, под знаком интеграла записывается символ частной производной В по времени (тогда как магнитный поток  является функцией только времени).

Поскольку электрическое поле может быть и стационарным (электростатическим), и вихревым, то в общем случаеЦиркуляция стационарного поля, как известно, равна нулю, поэтому. Итак, циркуляция вектора напряженности электрического поля по произвольному замкнутому контуру L равна взятой с обратным знаком скорости изменения магнитного потока сквозь поверхность S, ограниченную этим контуром.

Полученное уравнение - это первое уравнение Максвелла в интегральной форме. Оно показывает, что источником электрического поля могут быть не только электрические заряды, но и изменяющиеся во времени магнитные поля. Явление возникновения в пространстве вихревого электрического поля под влиянием переменного магнитного было использовано для создания индукционного ускорителя электронов – бетатрона. Бетатроны применяются в промышленности для просвечивания толстых металлических плит, в медицине - для лучевой терапии и в различных научных исследованиях.

Ток смещения.

Прежде чем приступить к изучению второго уравнения Максвелла, необходимо ознакомиться с понятием тока смещения. Максвелл предположил, что если переменное магнитное поле возбуждает в окружающем его пространстве электрическое, то должно существовать и обратное явление. Всякое изменение электрического поля должно вызывать появление вихревого магнитного поля. Это определяет существование еще одного явления индукции. Только в уравнении, которое его описывает, векторы В и Е должны поменяться местами.

Пусть переменное магнитное поле создается переменным током, т.е. током, сила которого изменяется во времени по гармоническому закону:  .

Рассмотрим цепь перемен­ного тока, содержащую конден­сатор С (рис.4.1). Пусть правая пластина конденсатора заряжена положительно, левая – отрицательно. При замыкании цепи конденсатор разряжается через сопротивление R, при этом во­круг проводника создается магнит­ное поле В.  Проведем вокруг провода замкнутый круговой контур L и нарисуем две ограниченных контуром L поверхностей – S и S’ (см. рис.4.1). Поверхность S пересекает проводник с током, а S’ – не пересекает. Очевидно, что через поверхность S’, которая, как и S, проведена через контур L (и имеет с ней равные права!) тока не течет. Через поверхность S протекает ток (рис. 4.2). Максвелл заключил, что раз между обкладками заряжающегося и разряжающегося конденсатора имеется переменное магнитное поле, то между обкладками должен протекать некоторый ток, названный им током смещения. Согласно Максвеллу, токи смещения протекают в тех участках, где отсутствуют проводники. Переменное электрическое поле в конденсаторе в каждый момент времени создает такое магнитное поле, как если бы между обкладками конденсатора существовал ток смещения, равный току в подводящих проводах.

Найдем количественное соотношение для “новой индукции”, т.е. связь между переменным электрическим полеми вызываемым им магнитным полем. Если σ – поверхностная плотность зарядов на обкладке конденсатора, то заряд на ней . Ток проводимости вблизи обкладок конденсатора:

.

Здесь мы поменяли местами операции интегрирования по поверхности и дифференцирования по времени, поскольку поверхность S неподвижна. Ранее было получено для конденсатора σ = D, где D – электрическое смещение в конденсаторе. Поэтому мы можем записать в векторной форме:

.

Сила тока, текущего через поверхность S связана с плотностью силы тока j следующим образом: 

.

Из сравнения двух последних соотношений следует  . Численное значение плотности тока обусловлено в данном случае не движением свободных электрических зарядов, а изменением во времени электрического поля. Поэтому Максвелл предложил назватьплотностью тока смещения .

Плотность тока смещения в данной точке пространства равна скорости изменения вектора электрического смещения в этой точке.

Ток смещения сквозь произвольную поверхность S:

.

Каково же направление векторов  и ? Определим это с помощью рис.4.3.


Подпись: Рис.4.3. Определение направления тока смещения: а – конденсатор заряжается; б – конденсатор разряжается

На рис. 4.3 а ток изображен текущим от правой обкладки конденсатора к левой. Если конденсатор заряжается, следовательно, поле между обкладками усиливается, величина электрического смещения увеличивается. Последнее означает, что , т.е. векторы  и  направлены в одну сторону.

При разрядке конденсатора (рис.4.3 б) ток начинает течь в противоположную сторону, и поле в конденсаторе ослабляется. Направление векторов   и  сохраняется, но они со временем уменьшаются по величине и теперь приращение  становится отрицательным, т.е. . Векторы  и  направлены в противоположные стороны. Таким образом, в каждом из рассмотренных случаев направление , а следовательно, и вектор плотности тока смещения  совпадает с направлением вектора плотности тока проводимости . Ток смещения обладает способностью создавать в окружающем пространстве магнитное поле. Направление силовых линий поля (с учетом правила правой руки) показано на рис.4.3.

Ток смещения, таким образом, появляется там, где есть изменяющееся во времени электрическое поле. Поэтому он существует не только в вакууме и в диэлектриках, но и внутри проводников, по которым проходит переменный электрический ток. Однако в таких случаях он пренебрежимо мал по сравнению с током проводимости.

Природа макроскопического магнитного поля, создаваемого проводниками с током, заключается в движении электрически заряженных микрочастиц (электронов, протонов, ионов). Основной характеристикой магнитного поля, представляющей собой среднее значение суммарного действия микроскопических полей, созданных отдельными микрочастицами, является вектор магнитной индукции .
ФОТОЭЛЕКТРОННЫЕ ПРИБОРЫ Фоторезисторы http://v-garant.ru/
Лабораторная работа по физике Электромагнетизм