Электромагнетизм

Детали машин принципы проектирования
Основы конструирования
Начертательная геометрия
Аксонометрия и проекции
Теория радиосигналов
Расчет электротехнических цепей
Электротехника и электроника
Математика задачи
Математика функции
Линейная алгебра
Дифференциальные уравнения
Теория функции комплексного переменного
Решение задач типового задания из учебника Кузнецова
Математический анализ задачи
Вычислить интеграл
Решение рядов
Дифференциалы от функции нескольких переменных
Лабораторные физика
Физика атома
Цепная ядерная реакция деления
Проблемы развития атомной энергетики
Биологическое действие
ионизирующих излучений
Квантовая механика
Электромагнетизм
Закон полного тока для магнитного поля
Магнитное поле в веществе
Явление самоиндукции
Теория Максвелла для
электромагнитного поля
Физические основы механики
Закон сохранения импульса
Принцип реактивного движения
Кинетическая и потенциальная энергии
Колебательное движение
Волновые процессы
Изучение движения маятника Максвела
Молекулярная физика
Барометрическая формула
Второе начало термодинамики
Кинетическая теория газа
Поверхностноенатяжение жидкости
История искусства
Русское искусство
Античный театр Древней Греции
Театр эпохи Возрождения
Театр эпохи Возрождения
Балетный театр
История искусства средних веков
Романское искусство
Искусство Южной Италии
Готическое искусство
Оптика
Оптическая физика
Электричество
Постоянный ток
Быстрый реактор
Курсовой проект реактор ВВЭР
Курсовой проект «Электрическая часть
электростанций и подстанций»
Действие радиации на человека
и окружающую среду
Лабораторные работы по информатике
Информационные технологии
Технологии защиты информации

Магнетизм - раздел физики, изучающий взаимодействие между электрически­ми токами, между токами и магнитами (телами с магнитным моментом) и между магнитами. Долгое время магнетизм считался совершенно независимой от электричества наукой. Однако ряд важнейших открытий 19-20 веков А.Ампера, М.Фарадея и др. доказали связь электрических и магнитных явлений, что позволило считать учение о магнетизме составной частью учения об электричестве.

Закон Ампера. В 1820 г. А.Ампер установил, что сила, с которой магнитное поле действует на элементарный проводник с током I и длиной :

Взаимодействие двух параллельных проводников с током. Законы Био – Савара – Лапласа и Ампера применяются для определения силы взаимодействия двух параллельных проводников с током. Рассмотрим два бесконечных прямолинейных проводника с токами I1 и I2 , расстояние между которыми равно а. На рис. 1.10 проводники расположены перпендикулярно чертежу. Токи в них направлены одинаково (из-за чертежа на нас) и обозначены точками

Закон полного тока для магнитного поля в вакууме(теорема о циркуляции вектора В). В разделе “Электростатика” было доказано, что циркуляция вектора напряженности электростатического поля вдоль замкнутого контура равна нулю, откуда следует потенциальный характер электростатического поля. Одним из основных отличий магнитного поля от электростатического поля является его непотенциальность.

Рамка с током в однородном магнитном поле. При исследовании магнитного поля часто используется замкнутый плоский контур с током (рамка с током), линейные размеры которого малы по сравнению с расстоянием до токов, образующих данное поле. Ориентация контура в пространстве определяется направлением нормали к контуру

Магнитное поле в веществе Магнитные моменты атомов. Для полного описания атома необходимы знания квантовой механики, которую мы будем изучать позднее. Однако магнитные свойства вещества хорошо объясняются с помощью простой и наглядной планетарной модели атома, предложенной Э.Резерфордом.

Намагниченность вещества. Ранее мы предполагали, что провода, несущие ток и создающие магнитное поле, находятся в вакууме. Если же провода находятся в какой-либо среде, то величина создаваемого ими магнитного поля изменится. Это объясняется тем, что всякое вещество, всякая среда способна под действием магнитного поля приобретать магнитный момент, т.е. намагничиваться.

Диамагнетизм. Диамагнетики. К диамагнетикам относятся такие вещества, у которых магнитный момент атома или молекулы в отсутствие внешнего магнитного поля равен нулю: Магнитные моменты электронов в таких атомах в отсутствие внешнего магнитного поля взаимно скомпенсированы. Это характерно для атомов и молекул с полностью заполненными электронными оболочками, например для атомов инертныхгазов, молекул водорода, азота.

Доменная структура ферромагнетиков. Классическая теория ферромагнетизма была развита французским физиком П.Вейсом (1907 г.). Согласно этой теории, весь объем ферромагнитного образца, находящегося при температуре ниже точки Кюри, разбит на небольшие области – домены,– которые самопроизвольно намагничены до насыщения.

Антиферромагнетики и ферриты. В некоторых случаях обменные взаимодействия приводят к тому, что собственные магнитные моменты электронов соседних атомов самопроизвольно ориентируются антипараллельно друг другу. Такие вещества называются антиферромагнетиками, а само явление – антиферромагнетизмом. Существование таких веществ было предсказано Д.Ландау еще в 1933 г. К ним относятся хром, марганец, эрбий, диспрозий, сплавы марганца и меди и др.

Явление самоиндукции. Вокруг любого проводника с током существует собственное магнитное поле, которое пронизывает этот проводник. При изменении тока в контуре также меняется и собственный магнитный поток через сам этот контур. Отсюда следует, что в контуре индуцируется э.д.с. и появляется дополнительный индукционный ток. Возникающая в таких случаях э.д.с., называется э.д.с. самоиндукции, а само явление – явлением самоиндукции.

Энергия магнитного поля

Теория Максвелла для электромагнитного поля. В 60-х годах XIX столетия Д.К. Максвелл, ознакомившись с работами Фарадея, решил придать теории электричества и магнетизма математическую форму. Обобщив законы, установленные экспериментальным путем – закон полного тока, закон электромагнитной индукции и теорему Остроградского-Гаусса, - Максвелл дал полную картину электромагнитного поля. В теории Максвелла решается основная задача электродинамики – установление характеристик электромагнитного поля заданной системы электрических зарядов и токов, т.е. определение напряженности электрического поля Е и индукции магнитного поля В при известных величинах зарядов и токов, создающих эти поля.

Второе уравнение Максвелла. Максвелл ввел понятие полного тока Электромагнитное поле. Электромагнитные волны. Итак, электрические и магнитные поля неразрывно связаны друг с другом. Теория, созданная Максвеллом, позволила ему предсказать существование электромагнитного поля – особой формы материи, посредством которой осуществляется взаимодействие между заряженными частицами и токами.

Лабораторная работа N 220. Закон Ампера. Характеристика магнитного поля,  единицы их измерения. Движущиеся заряды /токи/ изменяют свойства окружающего  их пространства - создают в них магнитное поле. Его наличие проявляется в том, что на движущиеся в нем заряды /токи/ действуют силы, т.е. взаимодействие токов  осуществляется через магнитное поле. Закон взаимодействия токов был установлен  в 1820 году Ампером. Он пришел к выводу, что сила F, которая действует на прямолинейный проводник с током, находящийся в однородном магнитном поле, прямо пропорциональна силе тока I в проводнике, его длине l, магнитной индукции поля В и синусу угла   между направлением тока в проводнике и вектором В

При накаливании металла, находящегося в слабом, электрическом поле, можно наблюдать поток отрицательного электричества, источником которого является поверхность металла. Если металл не накаливается,  но находится под воздействием сильного электрического поля (порядка 106 В/см),  то из него могут быть вырваны отрицательные заряды. Этот ток представляет собой  поток электронов, каждый из которых несет отрицательный заряд, равный 1,6 10-19 Кл. (кулон).

Лабораторная работа N 225 Определение индуктивности катушки методом амперметра-вольтметра Явление электромагнитной индукции. При движении проводника в магнитном поле нем возникает электродвижущая сила индукции, а если при этом проводник замкнут, то появляется электрический ток индукции

Лабораторная работа N 229 Изучение свойств ферромагнетиков Всякое тело является МАГНЕТИКОМ, т.е. под действием магнитного поля оно приобретает магнитный момент (намагничивается). Магнитные свойства тел обусловлены магнитными свойствами элементарных частиц, входящих в состав атомов и молекул.

Ферромагнитные тела образуют третий, особый класс магнетиков. Свое название они получили от наименования основного представителя этого класса веществ - железа. К ферромагнетикам относятся кобальт, никель, гадолиний, тербий, диспрозий, эрбий, ряд сплавов и химических соединений.

При намагничивании ферромагнетика происходит изменение его формы и объема. Это явление называется МАГНИТОСТРИКЦИЕЙ. Величина знак этого эффекта зависят от напряженности магнитного поля, угла между направлением поля кристаллической осью (в случае монокристаллических тел). Удлинение, имеющее при этом место (составляет стотысячные доли начальной длины). Наблюдается у ферромагнетиков обратное - намагничивания деформации. 

Лабораторная работа 230 Определение горизонтальной составляющей напряженности магнитного поля Земли Элементы земного магнетизма. Земля представляет собой огромный шаровой магнит. В любой точке пространства, окружающего Землю, и на ее поверхности обнаруживается действие магнитных сил, т.е. создается магнитное поле, которое подобно полю магнитного диполя “ав” помещенного в центре Земли (рис.I). Магнитные полюса лежат вблизи географических полюсов

Магнитное поле кругового тока. Основываясь на законе Био-Савара-Лапласа, найдем индукцию и напряженность магнитного поля в центре 0 витка радиусом R, по которому течет ток I

Лабораторная работа 232 Определение диэлектрической проницаемости жидкости методом двухпроводной линии Цель работы: а) ознакомиться с основами теории Максвелла, свойствами электромагнитных волн и механизмом распространения в двухпроводной линии

Построить три проекции призмы Начертательная геометрия Нанесение размеров на чертежах деталей http://autobun.ru/
Начертательная геометрия в конструкторской работе