Математический анализ Интеграл Ряды Вычислить интеграл Криволинейные интегралы Поверхностные интегралы Тройные интегралы в декартовых координатах в цилиндрических координатах в сферических координатах

Неравенство Бесселя и равенство Парсеваля

Неравенство Бесселя
Рассмотрим кусочно непрерывную функцию f (x), заданную в интервале [−π, π]. Ее разложение в ряд Фурье имеет вид
В неравенстве Бесселя устанавливается, что
Отсюда следует, что ряд сходится.
Равенство Парсеваля
Если f (x) является квадратично интегрируемой функцией в интервале [−π, π], так что выполняется соотношение
то неравенство Бесселя становится равенством. В этом случае справедлива формула Парсеваля:
Формула Парсеваля в комплексной форме
Снова предположим, что f (x) является квадратично интегрируемой функцией в интервале [−π, π]. Пусть cn − ее комплексные коэффициенты Фурье, то есть
где
Тогда формула Парсеваля записывается в виде
Заметим, что энергия 2π-периодической волны f (x) равна

 

Вычислить сумму ряда . Указание: применить формулу Парсеваля к функции f (x) = x.

 


Решение.
Разложение в ряд Фурье функции f (x) = x в интервале [−π, π] имеет вид
     


Здесь коэффициенты Фурье имеют следующие значения: (поскольку функция f (x) = x нечетная) и . Используя формулу Парсеваля. получаем
     
Отметим, что называется дзета-функцией Римана ζ (s). Таким образом, мы доказали, что .
Применить формулу Парсеваля к функции .

Решение.
В примере 4 на странице Определение ряда Фурье и типичные примеры было найдено разложение функции в ряд Фурье в интервале [−π, π]:
     
где
     
Записывая равенство Парсеваля для этой функции, получаем
     
Ряд известен как дзета-функция Римана ζ (s). Следовательно,
     

Применяя формулу Парсеваля к функции

     
найти суммы рядов .

Решение.
Разложение данной функции в ряд Фурье имеет вид (попробуйте найти это самостоятельно):
     
Коэффициенты Фурье в этом разложении равны
     
Применяя к данной функции равенство Парсеваля
     
получаем
     
Несложно также найти и сумму ряда :
     
Здесь (смотрите пример 1 выше). Следовательно,

     

Вычислить сумму ряда .


Решение.
В предыдущей задаче было найдено, что
     
Полагая , получаем
     
Можно заметить, что
     
Следовательно,
     
Тогда сумма ряда равна

     

Интегралом от функции комплексного переменного называется предел последовательности интегральных сумм; функция при этом определена на некоторой кривой l, кривая предполагается гладкой или кусочно-гладкой:

image104 (527 bytes)
где image105 (86 bytes)  - точка, произвольно выбранная на дуге  image111 (99 bytes) разбиения кривой,
image112 (101 bytes) -  приращение аргумента функции на этом участке разбиения,
image106 (240 bytes) -  шаг разбиения,
image113 (131 bytes)- длина хорды, соединяющей концы дуги image111 (99 bytes),
кривая l разбивается произвольным образом на n частей image111 (99 bytes), k=1,2...n.


Решение задач на исследование функции Математический анализ