Часы-браслет Pandora    + серьги Dior

Часы-браслет Pandora + серьги Dior

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Математический анализ Интеграл Ряды Вычислить интеграл Криволинейные интегралы Поверхностные интегралы Тройные интегралы в декартовых координатах в цилиндрических координатах в сферических координатах

Пример 6 Тело массой m брошено под углом к горизонту α с начальной скоростью v0 (рисунок 6). Вычислить работу силы притяжения за время движения тела до момента соударения с землей.

Решение.
Запишем закон движения тела в параметрической форме.
     
При соударении с землей y = 0, так что время полета тела равно
     
Силу притяжения запишем в виде . Тогда работа за время перемещения тела равна
     
Полученный результат объясняется тем, что гравитационное поле Земли является потенциальным, поскольку выполняется равенство
     
Найдем потенциал этого поля. В общем виде он записывается как
     
Полагая , находим
     
Таким образом, потенциал гравитационного поля равен
     
где C − константа, которую можно положить равной 0. В результате получаем потенциал в виде
     
Отсюда видно, что при перемещении тела из начальной точки O(0,0) до конечной точки A(L,0) работа равна
     
Рис.6
Рис.7

 

Пример 7 Вычислить индукцию магнитного поля в вакууме на расстоянии r от оси бесконечно длинного проводника с током I.


Решение.
Чтобы найти магнитное поле на расстонии r от проводника, рассмотрим круговой контур радиуса r, расположенный перпендикулярно проводнику с током (рисунок 7). Поскольку поле направлено по касательной к круговому контуру в любой его точке, то скалярное произведение векторов и есть просто . Тогда можно записать
     
В результате получаем
     

  Пример 8 Оценить значение электродвижущей силы ε и электрического поля E, возникающих в кольце радиусом 1 см у пассажира самолета, при полете самолета в магнитном поле Земли со скоростью 900 км/ч.


Решение.
Согласно закону Фарадея
     
Поскольку проводящее кольцо перемещается в магнитном поле Земли, возникает изменение магнитного потока ψ, проходящего через кольцо.

Предположим, что магнитное поле перпендикулярно плоскости кольца. Тогда за время изменение потока равно
     
где , v − скорость самолета, B − индукция магнитного поля Земли. Из последнего выражения получаем
     
Подставляя заданные величины
     
находим значение э.д.с.:
     
Как видно, это вполне безопасно для авиапассажиров.

Напряженность возникающего электрического поля найдем по формуле . В силу симметрии, наведенное электрическое поле будет иметь постоянную амплитуду в любой точке кольца. Оно будет направлено по касательной к кольцу в любой его точке. Это позволяет легко вычислить криволинейный интеграл.
     
Следовательно, напряженность электрического поля равна
     

 

Физические приложения поверхностных интегралов

Поверхностные интегралы применяются во многих прикладных расчетах. В частности, с их помощью вычисляются

Масса оболочки
Пусть S представляет собой тонкую гладкую оболочку. Распределение массы оболочки описывается функцией плотности . Тогда полная масса оболочки выражается через поверхностный интеграл первого рода по формуле
Центр масс и моменты инерции оболочки
Пусть распределение массы m в тонкой оболочке описывается непрерывной функцией плотности . Координаты центра масс оболочки определяются формулами
где
− так называемые моменты первого порядка относительно координатных плоскостей x = 0, y = 0 и z = 0, соответственно.

Моменты инерции оболочки относительно осей Ox, Oy, Oz выражаются, соответственно, формулами
Моменты инерции оболочки относительно плоскостей xy, yz, xz определяются формулами
Сила притяжения поверхности
Пусть задана поверхность S, а в точке (x0, y0, z0), не принадлежащей поверхности, находится тело массой m (рисунок 1).
Рис.1
Рис.2
Сила притяжения между поверхностью S и точечным телом m определяется выражением
где , G - гравитационная постоянная, − функция плотности.

Сила давления
Предположим, что поверхность S задана вектором и находится под воздействием некоторой силы давления (это может быть плотина, крыло самолета, стенка баллона со сжатым газом и т.д.). Полная сила , созданная давлением , находится с помощью поверхностного интеграла по формуле
Давление, по определению, действует в направлении вектора нормали к поверхности S в каждой точке. Поэтому, мы можем записать
где − единичный нормальный вектор к поверхности S.

Поток жидкости и поток вещества
Если в качестве векторного поля рассматривается скорость жидкости , то поток через поверхность S называется потоком жидкости. Он равен объему жидкости, проходящей через поверхность S в единицу времени и выражается формулой
Аналогично, поток векторного поля , где ρ − плотность, называется потоком вещества и определяется выражением
Он численно равен массе вещества, проходящего через поверхность S в единицу времени.

Заряд поверхности
Пусть величина является плотностью распределения заряда по поверхности. Тогда полный заряд, распределенный по проводящей поверхности S выражается формулой
Теорема Гаусса
Поток электрического смещения через замкнутую поверхность S равен алгебраической сумме всех зарядов, расположенных внутри поверхности:
где , − напряженность электрического поля, ε − относительная диэлектрическая проницаемость среды, − диэлектрическая проницаемость вакуума.
Теорема Гаусса применима к любым замкнутым поверхностям. В случае поверхности с достаточной симметрией, данная теорема упрощает вычисление электрического поля. Теорему Гаусса рассматривают как один из основных постулатов теории электричества. Она входит в систему основных уравнений Максвелла.

Исследовать на конформность в точке z=¥ функцию w=iz-2.

Решение. Во всех точках z¹¥ производная существует и не равна нулю. При z=¥  , w=¥, поэтому, согласно определению, необходимо сделать две замены: , и . В итоге, для исследования на конформность имеем функцию Эта функция в точке z=0 имеет производную не равную нулю.


На сайте http://www.parket-ru.ru wood bee дуб арктик.
Решение задач на исследование функции Математический анализ