Часы-браслет Pandora    + серьги Dior

Часы-браслет Pandora + серьги Dior

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Математический анализ Интеграл Ряды Вычислить интеграл Криволинейные интегралы Поверхностные интегралы Тройные интегралы в декартовых координатах в цилиндрических координатах в сферических координатах

Физические приложения двойных интегралов

Масса и статические моменты пластины
Предположим, что плоская пластина изготовлена из неоднородного материала и занимает область R в плоскости Oxy. Пусть плотность пластины в точке (x, y) в области R равна . Тогда масса пластины выражается через двойной интеграл в виде
Статический момент пластины относительно оси Ox определяется формулой
Аналогично находится статический момент пластины относительно оси Oy :
Координаты центра масс пластины, занимающей область R в плоскости Oxy с плотностью, распределенной по закону , описываются формулами
Для однородной пластины с плотностью для всех (x, y) в области R центр масс определяется только формой области и называется центроидом.

Моменты инерции пластины
Момент инерции пластины относительно оси Ox выражается формулой
Аналогично вычисляется момент инерции пластины относительно оси Oy :
Полярный момент инерции пластины равен
Заряд пластины
Предположим, что электрический заряд распределен по области R в плоскости Oxy и его плотность распределения задана функцией . Тогда полный заряд пластины Q определяется выражением
Среднее значение функции
Приведем также формулу дял расчета среднего значения некоторой распределенной величины. Пусть f (x,y) является непрерывной функцией в замкнутой области R в плоскости Oxy. Среднее значение функции μ функции f (x,y) в области R определяется формулой

где − площадь области интегрирования R.

Пример 1 Определить координаты центра тяжести однородной пластины, образованной параболами и .


Решение.
Заданная пластина имеет форму, показанную на рисунке 1. Поскольку пластина однородна, то можно положить . Тогда масса пластины равна
     
Найдем теперь статические моменты относительно осей Ox и Oy.
     
Вычисляем координаты центра масс.
     
Рис.1
Рис.2


Пример 2 Вычислить моменты инерции треугольника, ограниченного прямыми (рисунок 2) и имеющего плотность .


Решение.
Найдем момент инерции пластины относительно оси Ox.
     
Аналогично вычислим момент инерции относительно оси Oy.
     

Пример 3 Электрический заряд по площади диска таким образом, что его поверхностная плотность равна . Вычислить полный заряд диска.


Решение.
В полярных координатах область, занятая диском, описывается множеством . Полный заряд будет равен

     

Физические приложения криволинейных интегралов

С помощью криволинейных интегралов вычисляются

Рассмотрим эти приложения более подробно с примерами.

Масса кривой
Предположим, что кусок проволоки описывается некоторой пространственной кривой C. Пусть масса распределена вдоль этой кривой с плотностью ρ (x,y,z). Тогда общая масса кривой выражается через криволинейный интеграл первого рода
Если кривая C задана в параметрическом виде с помощью векторной функции , то ее масса описывается формулой
В случае плоской кривой, заданной в плоскости Oxy, масса определяется как
или в параметрической форме
Центр масс и моменты инерции кривой
Пусть снова кусок проволоки описывается некоторой кривой C, а распределение массы вдоль кривой задано непрерывной функцией плотности ρ (x,y,z). Тогда координаты центра масс кривой определяются формулами
где
− так называемые моменты первого порядка.

Моменты инерции относительно осей Ox, Oy и Oz определяются формулами
Работа поля
Работа при перемещении тела в силовом поле вдоль кривой C выражается через криволинейный интеграл второго рода
где − сила, действующая на тело, − единичный касательный вектор (рисунок 1). Обозначение означает скалярное произведение векторов и .

Заметим, что силовое поле не обязательно является причиной движения тела. Тело может двигаться под действием другой силы. В таком случае работа силы иногда может оказаться отрицательной.

Если векторное поля задано в координатной форме в виде
то работа поля вычисляется по формуле
В частном случае, когда тело двигается вдоль плоской кривой C в плоскости Oxy, справедлива формула
где .

Если траектория движения C определена через параметр t (t часто означает время), то формула для вычисления работы принимает вид
где t изменяется в интервале от α до β.

Если векторное поле потенциально, то работа по перемещению тела из точки A в точку B выражается формулой
где − потенциал поля.
Рис.1
Рис.2
Закон Ампера
Криволинейный интеграл от магнитного поля с индукцией вдоль замкнутого контура C пропорционален полному току, протекающему через область, ограниченную контуром C (рисунок 2). Это выражается формулой
где - магнитная проницаемость ваккуума, равная Н/м.

Исследовать на конформность функцию в расширенной комплексной области.

Решение. В точках отличных от i и ¥ конформность следует из существования производной и не равенству её нулю.

В точке z=i значение функции w=¥, поэтому для исследования в этой точке нужно рассмотреть функцию   в точке z=i, (см. таблицу п. 3 ). Конформность следует из существования производной и не равенства её нулю при z=i.

В точке z=¥ w=1, поэтому для исследования на конформность в этой точке следует «бесконечность в аргументе» перевести предварительно в 0 (или, что то же заменить ¥ на 0 с помощью замены переменного ). Таким образом, для исследования берётся функция   в точке 0, которая в этой точке имеет производную, отличную от нуля.


Решение задач на исследование функции Математический анализ