Математический анализ Интеграл Ряды Метод замены переменной Вычислить двойной интеграл Вычислить двойной интеграл криволинейный интеграл поверхностный интеграл Интегрирование по частям Несобственные интегралы

Смешанное произведение векторов

Смешанным, или векторно-скалярным произведением трех векторов (обозначается ) называется произведение вида .

Пусть известны координаты векторов: , , . Векторное произведение векторов и – это вектор с координатами

.

Скалярное произведение вектора  на вектор :

Таким образом,

. (2.11)

Нетрудно показать, что . 

Отложим данные некомпланарные векторы , ,  от общего начала и построим на них как на ребрах параллелепипед (рис. 18).

 

Рис. 18

По определению скалярного произведения   , где – угол между векторами  и . Но  – площадь параллелограмма, построенного на векторах  и , а , где  – высота параллелепипеда. Таким образом, .

Смешанное произведение трех векторов с точностью до знака равно объему параллелепипеда, построенного на этих векторах как на ребрах. Можно записать: .

Объем тетраэдра, построенного на векторах , ,  (рис. 19) равен .

Рис. 19

Заметим, что если векторы , , образуют правую тройку, то  и` , а если левую, то  и .

Теорема. Для того чтобы три вектора были компланарны, необходимо и достаточно, чтобы их смешанное произведение равнялось нулю.

Доказательство. Необходимость. Пусть векторы , ,  компланарны. Можно считать, что они лежат в одной плоскости. Тогда вектор  перпендикулярен этой плоскости, следовательно, ,

а значит, их скалярное произведение равно нулю, то есть .

Достаточность. Пусть . Предположим, что векторы некомпланарны. Но тогда существует параллелепипед, построенный на этих векторах, объем которого , а это противоречит условию . Следовательно, предположение неверно, и векторы компланарны.

Пример 10. Доказать, что точки , ,  и  лежат в одной плоскости.

Решение. Достаточно показать, что векторы ,  и компланарны, то есть их смешанное произведение равно нулю. , , ;

.

Пример 11. Найти объем тетраэдра, построенного на векторах , , . Правой или левой является тройка векторов , , ?

Решение. Найдем смешанное произведение этих векторов:

.

, значит, векторы образуют левую тройку; .

 

Прямая на плоскости

Пусть  – заданная точка на прямой ,  – вектор, перпендикулярный прямой , его называют нормальным вектором прямой, и пусть  – произвольная точка прямой  (рис. 20). Тогда , , то есть

.  (2.12)

(2.12) – уравнение прямой, проходящей через данную точку перпендикулярно данному вектору.

 

Рис. 20

Раскрыв скобки и сгруппировав слагаемые в (2.12), получим . Обозначим , уравнение примет вид

.  (2.13)

(2.13) – общее уравнение прямой на плоскости.

Если в уравнении (2.13) , , , то, перенеся слагаемое С в правую часть и разделив на него обе части уравнения, получим

, или . Обозначим , , тогда уравнение примет вид

 (2.14)

(2.14) – уравнение прямой в отрезках, здесь a и b – отрезки, отсекаемые прямой на осях координат (рис. 21): из уравнения (2.13) при  получим , а при   .

 

Рис. 21

Пусть  – заданная точка на прямой ,  – вектор, параллельный прямой, его называют направляющим вектором прямой, и пусть – произвольная точка прямой  (рис. 22). Тогда

  ,

. (2.15)

(2.15) – каноническое уравнение прямой, или уравнение прямой, проходящей через данную точку параллельно данному вектору.

 

Рис. 22

В частности, если прямая  параллельна оси , то ее направляющий вектор , и каноническое уравнение имеет вид , или . Если , то , и каноническое уравнение прямой , или .

Если в уравнении (2.15) величину отношения положить равной  
( – параметр, переменная величина, ):

, , то, выразив  и  из уравнений, получим

, .  (2.16)

(2.16) – параметрические уравнения прямой.

Пусть на прямой  заданы две точки  и . Тогда вектор  является направляющим вектором прямой и, используя уравнение (2.15), можно записать

. (2.17)

(2.17) – уравнение прямой, проходящей через две данные точки.

Пусть – заданная точка на прямой ,  – угол наклона прямой к оси ,  (рис. 23). В качестве направляющего вектора прямой  возьмем единичный вектор . Координаты единичного вектора совпадают с его направляющими косинусами, поэтому , но . Используя уравнение (2.15), получим , или . Обозначив  ( – угловой коэффициент прямой), получим уравнение

.  (2.18)

 

Рис. 23

Выразив из (2.18) :  и обозначив , получим

.  (2.19)

(2.18), (2.19) – уравнения прямой с угловым коэффициентом. В уравнении (2.19)  – ордината точки пересечения прямой с осью .

Вычислить интеграл где n- целое и С – окружность |z|=r, проходимая в положительном направлении.

Решение. Воспользуемся разложением в ряд Лорана.

. Равенство k-n=1 Будет выполнено при n³ -1. Для этих значений параметра . Для остальных значений параметра n интеграл I=0.


Математика лекции, задачи. Примеры выполнения курсового и типового задания Решение задач на вычисление интеграла