Часы-браслет Pandora    + серьги Dior

Часы-браслет Pandora + серьги Dior

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Математический анализ Интеграл Ряды Вычислить интеграл Криволинейные интегралы Поверхностные интегралы Тройные интегралы в декартовых координатах в цилиндрических координатах в сферических координатах

Криволинейные интегралы первого рода

Определение
Пусть кривая C описывается векторной функцией , где переменная s представляет собой длину дуги кривой (рисунок 1).

Если на кривой C определена скалярная функция F, то интеграл называется криволинейным интегралом первого рода от скалярной функции F вдоль кривой C и обозначается как
Криволинейный интеграл существует, если функция F непрерывна на кривой C.
Рис.1
Рис.2
Свойства криволинейного интеграла первого рода
Криволинейный интеграл I рода обладает следующими свойствами:
  1. Интеграл не зависит от ориентации кривой;

  2. Пусть кривая C1 начинается в точке A и заканчивается в точке B, а кривая C2 начинается в точке B и заканчивается в точке D (рисунок 2). Тогда их объединением будет называться кривая C1 U C2, которая проходит от A к B вдоль кривой C1 и затем от B к D вдоль кривой C2. Для криволинейных интегралов первого рода справедливо соотношение
  3. Если гладкая кривая C задана параметрически соотношением и скалярная функция F непрерывна на кривой C, то
  4. Если C является гладкой кривой в плоскости Oxy, заданной уравнением , то
  5. Если гладкая кривая C в плоскости Oxy определена уравнением , то
  6. В полярных координатах интеграл выражается формулой
    где кривая C задана в полярных координатах функцией .

Пример 1 Найти интеграл вдоль отрезка прямой y = x от начала координат до точки (2,2) (рисунок 3).


Решение.
     
Рис.3
Рис.4

 

Пример 2 Вычислить интеграл , где C − дуга окружности .


Решение.
Запишем дифференциал дуги кривой:
     
Тогда, применяя формулу
     
в плоскости Oxy, получаем

     

Пример 3 Вычислить интеграл , где C − кривая, заданная уравнением .


Решение.
Используем формулу
     
Здесь
     
Следовательно,
     

   Пример 4 Вычислить интеграл , где C является отрезком прямой от точки O(0,0) до A(1,2) (рисунок 4 выше).


Решение.
Найдем сначала уравнение отрезка OA.
     
Применяя формулу
     
находим искомый криволинейный интеграл.

     

Пример 5 Вычислить интеграл , где кривая C задана параметрически в виде .


Решение.
Применяя формулу
     
можно записать
     

Пример 6 Вычислить криволинейный интеграл , где кривая C − отрезок прямой от точки (0,−2) до (4,0) (рисунок 5).


Решение.
Найдем уравнение отрезка AB.
     
По формуле
     
находим данный интеграл
     
Рис.5
Рис.6

 

Пример 7 Найти криволинейный интеграл , где кривая C является дугой эллипса , лежащей в первом квадранте (рисунок 6).


Решение.
Запишем уравнение эллипса в параметрической форме.
     
Диапазон изменений t для первого квадранта равен . Следовательно, по формуле
     
заданный интеграл преобразуется следующим образом
     
Сделаем замену. Положим . Тогда
     
Уточним пределы интегрирования. Если t = 0, то u = 0, а при получаем u = a. В результате интеграл становится равным
     
Для вычисления полученного интеграла удобно сделать еще одну замену переменной.
     
Если u = 0, то , и соответственно, если u = a, то . Таким образом,
     

 

Исследовать на конформность функцию в расширенной комплексной области.

Решение. В точках отличных от i и ¥ конформность следует из существования производной и не равенству её нулю.

В точке z=i значение функции w=¥, поэтому для исследования в этой точке нужно рассмотреть функцию   в точке z=i, (см. таблицу п. 3 ). Конформность следует из существования производной и не равенства её нулю при z=i.

В точке z=¥ w=1, поэтому для исследования на конформность в этой точке следует «бесконечность в аргументе» перевести предварительно в 0 (или, что то же заменить ¥ на 0 с помощью замены переменного ). Таким образом, для исследования берётся функция   в точке 0, которая в этой точке имеет производную, отличную от нуля.


Смотрите http://www.dial-master.ru пластиковые окна фрязино.
ритуальные швейные фабрики, juki.
Гравировка на сувенирах по материалам www.gravmos.ru.
паркетная доска баум премиум, grabo.
полировка часов цена.
Решение задач на исследование функции Математический анализ