Часы-браслет Pandora    + серьги Dior

Часы-браслет Pandora + серьги Dior

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Математический анализ Интеграл Ряды Вычислить интеграл Криволинейные интегралы Поверхностные интегралы Тройные интегралы в декартовых координатах в цилиндрических координатах в сферических координатах

Повторные интегралы

Области интегрирования I и II типа
Двойные интегралы вычисляются, как правило, с помощью повторных интегралов. Однако переход от двойных к повторным интегралам возможен не для произвольной области интегрирования R, а для областей определенного типа. Введем понятия областей интегрирования типа I и II.

Определение 1. Говорят, что область R на плоскости относится к типу I или является элементарной относительно оси Oy, если она лежит между графиками двух непрерывных функций, зависящих от x (рисунок 1), и описывается множеством:
Определение 2. Говорят, что область R на плоскости относится к типу II или является элементарной относительно оси Ox, если она лежит между графиками двух непрерывных функций, зависящих от y (рисунок 2), и описывается множеством:
Рис.1
Рис.2
Связь между двойными и повторными интегралами
Пусть f (x,y) является непрерывной функцией в области R типа I:
Тогда двойной интеграл от функции f (x,y) в данной области выражается через повторный интеграл в виде
Для области интегрирования типа II существует аналогичная формула. Если f (x,y) является непрерывной функцией в области R типа II:
то справедливо соотношение
Приведенные формулы (в англоязычной литературе они известны как теорема Фубини) позволяют вычислять двойные интегралы через повторные. В повторных интегралах сначала находится внутренний интеграл, а затем - внешний.

Пример 1 Найти повторный интеграл .


Решение.
Сначала вычислим внутренний интеграл и затем внешний.

     

Пример 2 Найти повторный интеграл .


Решение.
Здесь область интегрирования относится к типу II (является элементарной относительно оси Ox). Вычисляя сначала внутренний интеграл по x, и затем внешний по y, получаем
     

Пример 3 Вычислить .


Решение.
Запишем повторный интеграл в виде
     
Чтобы найти внутренний интеграл в квадратных скобках, сделаем замену:
     
Если , то , и, соответственно, если , то . Тогда
     

Пример 4 Вычислить .


Решение.
Вычисляя внутренний интеграл, получаем
     
Далее используем интегрирование по частям: . Пусть . Тогда
     
Подставляя это, получаем
     
Наконец вычислим последний интеграл:
     
Окончательный ответ:
     

Пример 5 Изменить порядок интегрирования в повторном интеграле .


Решение.
Область интегрирования относится к типу I (рисунок 3). Она представляет собой треугольник, ограниченный прямыми или и или . Переменная x изменяется в интервале . Изменяя порядок интегрирования, исходный интеграл можно записать в виде суммы следующих двух повторных интегралов:
     
Рис.3

Исследовать на конформность функцию в расширенной комплексной области.

Решение. В точках отличных от i и ¥ конформность следует из существования производной и не равенству её нулю.

В точке z=i значение функции w=¥, поэтому для исследования в этой точке нужно рассмотреть функцию   в точке z=i, (см. таблицу п. 3 ). Конформность следует из существования производной и не равенства её нулю при z=i.

В точке z=¥ w=1, поэтому для исследования на конформность в этой точке следует «бесконечность в аргументе» перевести предварительно в 0 (или, что то же заменить ¥ на 0 с помощью замены переменного ). Таким образом, для исследования берётся функция   в точке 0, которая в этой точке имеет производную, отличную от нуля.


Решение задач на исследование функции Математический анализ