Информатика
Проектирование
Геометрия
Алгебра
Курсовой
Графика
Электротехника
Задачи

Сопромат

Лабораторные
Методика
Физика
Чертежи
Энергетика
Математика
Реактор

Координаты вектора

Рассмотрим декартову прямоугольную систему координат Oxyz. Обозначим , ,  – единичные векторы, направленные соответственно вдоль осей Ox, Oy, Oz (орты осей). Эти векторы называются декартовым прямоугольным базисом в пространстве.

Пусть  – произвольный вектор в пространстве. Перенесем его начало в точку O ( ) и построим прямоугольный параллелепипед, в котором вектор  является диагональю (рис. 11). Тогда , где , , – составляющие вектора  по осям Ox, Oy, Oz. Но , аналогично ,

.

 

Рис. 11

Обозначая , , , получим .

Это равенство называется разложением вектора  по базису , , , а числа , ,  называются координатами вектора  в этом базисе, или декартовыми прямоугольными координатами вектора. Пишут  или .

Таким образом, прямоугольные декартовы координаты вектора – это его проекции на соответствующие оси координат.

Зная координаты вектора, легко выразить его длину:

 (2.2)

(квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов его измерений).

Если , где , , то , , . Тогда , или

  (2.3)

так выражаются координаты вектора через координаты его начала и конца.

Из свойств проекций (а координаты вектора – это его проекции на оси координат) следует:

если , , , то

1) , , – равные векторы имеют соответственно равные координаты;

2)  – при сложении векторов их координаты складываются, при вычитании – вычитаются;

3)  – при умножении вектора на число его координаты умножаются на это число;

4) , , , то есть   (2.4)

координаты коллинеарных векторов пропорциональны.

 

Направляющие косинусы вектора

Направление вектора в пространстве определяется углами , которые вектор образует с осями координат (рис. 12). Косинусы этих углов называются направляющими косинусами вектора: , , .

 

Рис. 12

Из свойств проекций: , , . Следовательно,

, , . (2.5)

Легко показать, что

1)     ;

2)     координаты любого единичного вектора совпадают с его направляющими косинусами: .

 

Деление отрезка в данном отношении

Говорят, что точка  делит отрезок  в отношении , если , или  (рис. 13).

Рис. 13

Пусть координаты точек и  известны: , . Найдем координаты точки . Очевидно, что , где , . Приравнивая координаты векторов, найдем:

, , . (2.6)

В частности, если – середина отрезка , то , тогда

, , . (2.7)

Пример 4. Даны вершины треугольника , , . Найти точку пересечения медиан этого треугольника и орт вектора  (рис. 14).

Решение. AD – медиана, следовательно, D – середина
отрезка BC, ее координаты находятся по формулам (2.7):
, , , то есть . Медианы точкой пересечения K делятся в отношении 2:1, значит, , тогда по формулам (2.6) найдем координаты точки K: , , . Таким образом, точка пересечения медиан – . Найдем координаты вектора  по формуле (2.3) и его длину по формуле (2.2): ; . Координаты единичного вектора совпадают с его направляющими косинусами. По формулам (2.5) , , , следовательно,  – орт вектора .

 

Рис. 14

Пример 5. Показать, что точки , ,  лежат на одной прямой, причем A – между B и C.

Решение. Рассмотрим векторы  и (рис. 15). Если точки A, B, C лежат на одной прямой, то векторы  и должны быть кол-линеарны (условие 2.4). А если точка A лежит между B и C, то  и должны быть сонаправлены (коэффициент пропорциональности координат ) и . Проверим выполнение этих условий.

, ; , следовательно,

. Координаты вектора  больше, значит, он длиннее и точка A лежит между B и C.

 

Рис. 15

 

Скалярное произведение векторов

Скалярным произведением двух векторов (обозначается или ) называется число, равное произведению длин этих векторов на косинус угла между ними: , где .

Учитывая, что , , можно записать: . Отсюда

. (2.8)

Из физики известно: если – постоянная сила, действующая на материальную точку, а  – вектор перемещения точки под действием этой силы, то работа, совершаемая силой  на участке l, равна .

Свойства скалярного произведения:

1)     ;

2)     ;

3)     ;

4)     , или , или .

Таким образом,  – условие перпендикулярности векторов.

5)          , или, обозначая  (скалярный квадрат вектора ), получим , откуда .

Пусть известны координаты векторов  и : , .

Тогда  

Таким образом,

. (2.9)

Пример 6. Найти угол между диагоналями параллелограмма, построенного на векторах  и .

Решение. Диагоналями параллелограмма являются векторы  и  (см. рис. 5). Тогда , , , следовательно,  – угол между диагоналями равен .

Пример 7. Дано: , , , . Вычислить – длину вектора .

Решение. Из свойства (5) скалярного произведения ; но , , , следовательно, .

Вычислить интеграл где n- целое и С – окружность |z|=r, проходимая в положительном направлении.

Решение. Воспользуемся разложением в ряд Лорана.

. Равенство k-n=1 Будет выполнено при n³ -1. Для этих значений параметра . Для остальных значений параметра n интеграл I=0.


Курс электрических цепей

Радиосигналы
История искусства
Основы конструирования
Энергосбережение