Часы-браслет Pandora    + серьги Dior

Часы-браслет Pandora + серьги Dior

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Математический анализ Интеграл Ряды Метод замены переменной Вычислить двойной интеграл Вычислить двойной интеграл криволинейный интеграл поверхностный интеграл Интегрирование по частям Несобственные интегралы

Производная степенной функции с любым действительным показателем

Известно, что (xn)' = nxn-1 для натурального n. Пусть теперь n любое дейст­вительное число и х>0. Справедливо тождество xn = enlnx. Тогда у = enlnx – сложная функция и ее производная вычисляется следующим образом: y' = (enlnx)' = enlnx(nlnx)' = enlnx =   xn = nxn-1. Итак, при любом действитель­ном n и х>0 верна формула (xn)' = nxn-1. Можно показать, что эта формула справедлива и при х<0, если при этом функция y = xn определена.

Таблица формул дифференцирования

В таблице приняты обозначения: с, n – любые действительные числа; а – любое положительное действительное число, кроме единицы. u= u(x) – функция, дифференцируемая в точке х, y = f (u) – функция, дифференцируемая в соответствующей точке u. Таблица составлена на основании формул дифференцирования основных элементарных функций и теоремы о производной сложной функции.

1.(с)' = 0

8. ,

2. (un)' = nun-1u'

9.

3. (au) = aulnau'

10.

3а. (eu) = euu'

11.

4.

4а.

13. (chu)' = shu×u'

5. (sinu)' = cosu×u'

14.

6.(cosu)' = -sinu ×u'

15.

7.  

16.

Производные высших порядков

Предположим, что функция y = f(x) дифференцируема в некотором интер­вале (а, в). Тогда ее производная f'(x) в этом интервале является функцией х. Пусть эта функция также имеет производную в (а, в). Эта производная называется второй производной или производной второго порядка функции y = f(x)и обозначается y'' или f''(x).

Таким образом, f''(x) = (f'(x)) '. При этом f'(x) называется первой произ­водной или производной первого порядка функции f(x).

Аналогично определяются производные третьего, четвертого и так далее порядков. Вообще, производной n –го порядка функции y = f(x) в точке х называ­ется первая производная производной (n-1)-го порядка функции y = f(x) при ус­ловии, что в точке х существуют все производные от первого до n –го порядков. Обозначение: y(n) или f(n)(x). Таким образом, f(n)(x) = ( f(n-1)(x)) '.

Производные порядка выше первого называются производными высших порядков.

Примеры.

1.                 Найти у''' для функции y = cos2x.

y' = 2cosx(-sinx) = -sin2x

y'' = -2cos2x

y''' = 4sin2x

2.                 Найти y(n) для функции y = e3x, y' = 3e3x, y'' = 32e3x, y''' = 33e3x,…, y(n) = 3ne3x

Механический смысл второй производной.

Пусть материальная точка движется прямолинейно неравномерно по закону S = f(t), где t-время, f(t) – путь, пройденный за время t. Из физики известно, что при этом ускорение точки в момент времени t равно производной скорости по t. Таким образом, ускорение w(t) = v'(t) = S''(t) равно второй производной пути по времени.

Дифференцирование функций, заданных параметрически

Пусть функция у от х задана параметрическими уравнениями:

x = x(t), y = y(t), tÎ(a;b).

Предположим, что функции x(t), y(t), имеют производные на (a;b) и функция x(t) имеет обратную функцию t = g(х), которая также имеет производную в соответствующих точках х. Тогда определенную параметрическими уравнениями функцию у от х можно рассматривать как сложную функцию y = y(t), t = g(х), t – промежуточный аргумент. По правилу дифференцирования сложной функции получаем y'x = y't t'x = y't g'x. По теореме о дифференцировании обратной функции g'x = . Учитывая это, получаем y'x =.

Если существует у''х, то рассуждая аналогично, получаем

Вообще,   при условии, что все производные существуют.

Пример. x = cos3t, y=sin3t. Вычислить у''х. x't = – 3cos2t sint, y't=3sin2tcost, поэтому   . Тогда .

 

Дифференцирование функций, заданных неявно

Пусть значения переменных х и у связаны уравнением

F(x, y) = 0. (1)

Если функция y = f(x), определенная на некотором интервале (а,в), такая, что уравнение (1) при подстановке в него вместо у выражения f(x) обращается в тождество, то говорят, что уравнение (1) задает функцию y = f(x) неявно или что функция y = f(x) есть неявная функция.

Укажем правило нахождения производной неявной функции, не преобразовывая ее в явную, то есть не представляя в виде y = f(x), так как часто это преобразование бывает технически сложным или невозможным.

Для нахождения производной у'х неявной функции, нужно продифференцировать по х обе части равенства (1), учитывая, что у есть функция от х. Затем из полученного равенства выразить у'х.

Пример 1. Вычислить у'х.

У5+ху-х2 = 0

Продифференцируем обе части по х. Получим 5у4у'+у+ху'-2х=0. Выразим у'. y'(5у4) = 2х-у, у' = (2х-у)/(5у4).

Пример 2. 

tg(x+y) = xy

Продифференцируем обе части по х. Получим   или . Отсюда или . Окончательно .

Заметим, что производная неявной функции выражается через х и у, то есть получается равенство

y' = g(x, y) (2)

Для вычисления второй производной неявной функции, нужно продифференцировать обе части равенства (2) по х и затем подставить выражение g(x, y) вместо y'.

Аналогично можно вычислить производные любого порядка неявной функции.

Пример. х22-1=0. Найти у''.

Продифференцируем обе части данного равенства по х, получим 2х+2уу' = 0, откуда у' = -. Продифференцируем обе части последнего равенства по х, получим   или . Подставим , вместо у'. .

Существует несколько способов вычисления интегралов в комплексной области.1 способ. Интеграл вычисляется сведением к криволинейным интегралам от функций действительных переменных 2 способ. Интеграл вычисляется сведением к определенному интегралу (путь интегрирования задается в параметрической форме 3 способ. Вычисление интегралов от аналитической функции в односвязных областях
Математика лекции, задачи. Примеры выполнения курсового и типового задания Решение задач на вычисление интеграла