Информатика
Проектирование
Геометрия
Алгебра
Курсовой
Графика
Электротехника
Задачи

Сопромат

Лабораторные
Методика
Физика
Чертежи
Энергетика
Математика
Реактор

Дифференциальное исчисление функции одной перменной

Производная

Пусть дана функция y = f(x). Рассмотрим два значения ее аргумента: исходное х0 и новое х. Разности = х-х0 и D y = f(x)-f(x0) = y-y0 называются соответ­ственно приращением аргумента и приращением функции в точке х0. Оче­видно, что х = х0+Dх, у = у0+Dу, = f(x0+Dx)-f(x0). В дальнейшем будем считать значение х0 фиксированным, а х – переменным. При этом и являются пе­ременными величинами.

Производной функции у = f(x) в точке х0 называется если этот предел существует. Производная обозначается у'(x0) или f'(x0). Таким образом, .

Пусть Х = {х}-множество всех таких х, для которых существует y'(х). Очевидно, что (х) является функцией, определенной на множестве Х.

Нахождение производной функции называется дифференцированием этой функции. Функция, имеющая производную в точке х0, называется дифференцируемой в этой точке. Функция, дифференцируемая в каждой точке интервала (a, b), называется дифференцируемой на интервале (a, b).

Из курса средней школы известен геометрический смысл производной. Пусть функция у = f(x) дифференцируема в точке х0, тогда угловой коэффициент касательной к графику функции, проведенной в точке (х0, f(х0)) равен у'(х0).

Из курса средней школы известен также физический смысл производной. Пусть материальная точка движется прямолинейно неравномерно по закону S = f(t), где t – время, S – путь, проходимый точкой за время t. Тогда скорость точки в момент времени t равна: V = S'(t).

Теорема (о связи дифференцируемости и непрерывности). Если функция у = f(x) дифференцируема в точке х0, то она непрерывна в этой точке.

Доказательство. Пусть аргумент х получает в точке х0 приращение ¹ 0. Ему соответствует некоторое приращение функции . Вычислим предел:

а это и означает непрерывность функции в точке х0.

Заметим, что обратная теорема неверна: существуют непрерывные функции, которые в некоторых точках не дифференцируемы. Примерами могут слу­жить функции у = çх çи в точке х = 0. В обоих случаях (0) не существует.

Заметим, что график у = çх çв точке х = 0 не имеет касательной, а график в точке х=0 имеет вертикальную касательную – ось Оу.

Можно показать, что для того, чтобы функция у = f(x) была дифференцируемой в точке х0, необходимо и достаточно, чтобы ее график имел невертикаль­ную касательную в точке (х0, f(х0)).

п. 2. Вычисление производной

Формулы вычисления производной некоторых элементарных функций получены в курсе средней школы:

1.      С' = 0, где С – константа.

2.      n) ' = n×xn-1, где n – натуральное число

3.      (ax)'= axlna, где а>0, a ¹ 1. В частности, (ех)' = ех

4.      , где а>0, a ¹ 1. В частности,

5.      (sinx)' = cosx

6.      (cosx)' = -sinx

В курсе средней школы установлены основные правила дифференцирования.

Пусть u = u(x) и v = v(x) – функции, дифференцируемые в точке х. Тогда в этой точке дифференцируемы функции u+v, u×v, . Последнее при условии, что v(x) ¹ 0. Причем

(u+v)' = u'+v'

(u×v)' = u'v+uv'

Следствием последних трех соотношений являются следующие два: (сu)' = cu', где с – константа, и (u-v)' = u'-v'

Используя правило нахождения производной частного, легко получаются формулы:   и , которые выполняются для любого х, при котором существует tgx и cosx ¹ 0 или существует ctgx и sinx¹0.

Производная обратной функции

Теорема. Пусть функция х = f(y) монотонна и дифференцируема в некото­ром интервале (a, b) и имеет в точке у этого интервала производную f'(y), не равную нулю. Тогда в соответствующей точке х обратная функция у = f--1(x) имеет производную [f--1(x)]', причем

  или

Доказательство. По условию теоремы функция x = f(y) монотонна и дифференци­руема, следовательно, по теореме о существовании обратной функции функция у = f--1(x) существует, монотонна и непрерывна на соответствующем интервале. Дадим аргументу х приращение Δх¹0. Тогда функция у = f--1(x) получит приращение Δу, которое в силу ее монотонности отлично от нуля. Так как функция у = f--1(x) непрерывна, то Δу®0 при Δх®0. Тогда .

Пользуясь доказанной теоремой, вычислим производные обратных триго­нометрических функций. Для функции у = arcsinx обратной является функция x = siny, которая является в интервале   монотонной и дифференцируе­мой. Ее производная x' = cosy в этом интервале в нуль не обращается. Поэтому . Таким образом .

Аналогично получаются формулы

Пусть y = f(u) и u = g(x). Тогда функция y = f(g(x)) называется сложной функ­цией от х.

Теорема 1. Если функция u=g(x) имеет производную u'x в точке х, а функ­ция y = f(u) имеет производную у'u в соответствующей точке u, то сложная функция y = f(g(x)) в точке х имеет производную у'x, причем у'x = у'u× u'x.

Доказательство. Дадим х приращение Δх. Тогда u и у получат соответст­венно приращения Δu и Δу. Будем считать, что Δu при Δх®0 не принимает зна­чений, равных нулю. Тогда . Так как функция u = g(x) дифференцируема, а следовательно, непрерывна, то Δu®0 при Δх®0. Поэтому . Тогда . Это означает, что у'x = у'u× u'x.

Заметим, что теорема верна и в случае, когда при Δх®0 Δu принимает значения, равные нулю.

Примеры. Найти производную функции.

1.      у = lnarctgx

 .

2. y = cos3(x2)

y' = 3cos2(x2)(-sin(x2))2x = -6xsin(x2)cos2(x2)

3.

.

 

Производные гиперболических функций

, поэтому

Аналогично: (chx)' = shx.

Аналогично:

Существует несколько способов вычисления интегралов в комплексной области.1 способ. Интеграл вычисляется сведением к криволинейным интегралам от функций действительных переменных 2 способ. Интеграл вычисляется сведением к определенному интегралу (путь интегрирования задается в параметрической форме 3 способ. Вычисление интегралов от аналитической функции в односвязных областях

Курс электрических цепей