Математический анализ Интеграл Ряды Метод замены переменной Вычислить двойной интеграл Вычислить двойной интеграл криволинейный интеграл поверхностный интеграл Интегрирование по частям Несобственные интегралы

Дифференциальное исчисление функции одной перменной

Производная

Пусть дана функция y = f(x). Рассмотрим два значения ее аргумента: исходное х0 и новое х. Разности = х-х0 и D y = f(x)-f(x0) = y-y0 называются соответ­ственно приращением аргумента и приращением функции в точке х0. Оче­видно, что х = х0+Dх, у = у0+Dу, = f(x0+Dx)-f(x0). В дальнейшем будем считать значение х0 фиксированным, а х – переменным. При этом и являются пе­ременными величинами.

Производной функции у = f(x) в точке х0 называется если этот предел существует. Производная обозначается у'(x0) или f'(x0). Таким образом, .

Пусть Х = {х}-множество всех таких х, для которых существует y'(х). Очевидно, что (х) является функцией, определенной на множестве Х.

Нахождение производной функции называется дифференцированием этой функции. Функция, имеющая производную в точке х0, называется дифференцируемой в этой точке. Функция, дифференцируемая в каждой точке интервала (a, b), называется дифференцируемой на интервале (a, b).

Из курса средней школы известен геометрический смысл производной. Пусть функция у = f(x) дифференцируема в точке х0, тогда угловой коэффициент касательной к графику функции, проведенной в точке (х0, f(х0)) равен у'(х0).

Из курса средней школы известен также физический смысл производной. Пусть материальная точка движется прямолинейно неравномерно по закону S = f(t), где t – время, S – путь, проходимый точкой за время t. Тогда скорость точки в момент времени t равна: V = S'(t).

Теорема (о связи дифференцируемости и непрерывности). Если функция у = f(x) дифференцируема в точке х0, то она непрерывна в этой точке.

Доказательство. Пусть аргумент х получает в точке х0 приращение ¹ 0. Ему соответствует некоторое приращение функции . Вычислим предел:

а это и означает непрерывность функции в точке х0.

Заметим, что обратная теорема неверна: существуют непрерывные функции, которые в некоторых точках не дифференцируемы. Примерами могут слу­жить функции у = çх çи в точке х = 0. В обоих случаях (0) не существует.

Заметим, что график у = çх çв точке х = 0 не имеет касательной, а график в точке х=0 имеет вертикальную касательную – ось Оу.

Можно показать, что для того, чтобы функция у = f(x) была дифференцируемой в точке х0, необходимо и достаточно, чтобы ее график имел невертикаль­ную касательную в точке (х0, f(х0)).

п. 2. Вычисление производной

Формулы вычисления производной некоторых элементарных функций получены в курсе средней школы:

1.      С' = 0, где С – константа.

2.      n) ' = n×xn-1, где n – натуральное число

3.      (ax)'= axlna, где а>0, a ¹ 1. В частности, (ех)' = ех

4.      , где а>0, a ¹ 1. В частности,

5.      (sinx)' = cosx

6.      (cosx)' = -sinx

В курсе средней школы установлены основные правила дифференцирования.

Пусть u = u(x) и v = v(x) – функции, дифференцируемые в точке х. Тогда в этой точке дифференцируемы функции u+v, u×v, . Последнее при условии, что v(x) ¹ 0. Причем

(u+v)' = u'+v'

(u×v)' = u'v+uv'

Следствием последних трех соотношений являются следующие два: (сu)' = cu', где с – константа, и (u-v)' = u'-v'

Используя правило нахождения производной частного, легко получаются формулы:   и , которые выполняются для любого х, при котором существует tgx и cosx ¹ 0 или существует ctgx и sinx¹0.

Производная обратной функции

Теорема. Пусть функция х = f(y) монотонна и дифференцируема в некото­ром интервале (a, b) и имеет в точке у этого интервала производную f'(y), не равную нулю. Тогда в соответствующей точке х обратная функция у = f--1(x) имеет производную [f--1(x)]', причем

  или

Доказательство. По условию теоремы функция x = f(y) монотонна и дифференци­руема, следовательно, по теореме о существовании обратной функции функция у = f--1(x) существует, монотонна и непрерывна на соответствующем интервале. Дадим аргументу х приращение Δх¹0. Тогда функция у = f--1(x) получит приращение Δу, которое в силу ее монотонности отлично от нуля. Так как функция у = f--1(x) непрерывна, то Δу®0 при Δх®0. Тогда .

Пользуясь доказанной теоремой, вычислим производные обратных триго­нометрических функций. Для функции у = arcsinx обратной является функция x = siny, которая является в интервале   монотонной и дифференцируе­мой. Ее производная x' = cosy в этом интервале в нуль не обращается. Поэтому . Таким образом .

Аналогично получаются формулы

Пусть y = f(u) и u = g(x). Тогда функция y = f(g(x)) называется сложной функ­цией от х.

Теорема 1. Если функция u=g(x) имеет производную u'x в точке х, а функ­ция y = f(u) имеет производную у'u в соответствующей точке u, то сложная функция y = f(g(x)) в точке х имеет производную у'x, причем у'x = у'u× u'x.

Доказательство. Дадим х приращение Δх. Тогда u и у получат соответст­венно приращения Δu и Δу. Будем считать, что Δu при Δх®0 не принимает зна­чений, равных нулю. Тогда . Так как функция u = g(x) дифференцируема, а следовательно, непрерывна, то Δu®0 при Δх®0. Поэтому . Тогда . Это означает, что у'x = у'u× u'x.

Заметим, что теорема верна и в случае, когда при Δх®0 Δu принимает значения, равные нулю.

Примеры. Найти производную функции.

1.      у = lnarctgx

 .

2. y = cos3(x2)

y' = 3cos2(x2)(-sin(x2))2x = -6xsin(x2)cos2(x2)

3.

.

 

Производные гиперболических функций

, поэтому

Аналогично: (chx)' = shx.

Аналогично:

Существует несколько способов вычисления интегралов в комплексной области.1 способ. Интеграл вычисляется сведением к криволинейным интегралам от функций действительных переменных 2 способ. Интеграл вычисляется сведением к определенному интегралу (путь интегрирования задается в параметрической форме 3 способ. Вычисление интегралов от аналитической функции в односвязных областях
Математика лекции, задачи. Примеры выполнения курсового и типового задания Решение задач на вычисление интеграла