Курсовой проект реактор ВВЭР

Детали машин принципы проектирования
Основы конструирования
Начертательная геометрия
Аксонометрия и проекции
Теория радиосигналов
Расчет электротехнических цепей
Электротехника и электроника
Математика задачи
Математика функции
Линейная алгебра
Дифференциальные уравнения
Теория функции комплексного переменного
Решение задач типового задания из учебника Кузнецова
Математический анализ задачи
Вычислить интеграл
Решение рядов
Дифференциалы от функции нескольких переменных
Лабораторные физика
Физика атома
Цепная ядерная реакция деления
Проблемы развития атомной энергетики
Биологическое действие
ионизирующих излучений
Квантовая механика
Электромагнетизм
Закон полного тока для магнитного поля
Магнитное поле в веществе
Явление самоиндукции
Теория Максвелла для
электромагнитного поля
Физические основы механики
Закон сохранения импульса
Принцип реактивного движения
Кинетическая и потенциальная энергии
Колебательное движение
Волновые процессы
Изучение движения маятника Максвела
Молекулярная физика
Барометрическая формула
Второе начало термодинамики
Кинетическая теория газа
Поверхностноенатяжение жидкости
История искусства
Русское искусство
Античный театр Древней Греции
Театр эпохи Возрождения
Театр эпохи Возрождения
Балетный театр
История искусства средних веков
Романское искусство
Искусство Южной Италии
Готическое искусство
Оптика
Оптическая физика
Электричество
Постоянный ток
Быстрый реактор
Курсовой проект реактор ВВЭР
Курсовой проект «Электрическая часть
электростанций и подстанций»
Действие радиации на человека
и окружающую среду
Лабораторные работы по информатике
Информационные технологии
Технологии защиты информации

Методическое руководство к расчёту Водо-водянных реакторов в курсовом проектировании Датой рождения российской ядерной энергетики принято считать 1954-й – год пуска в Советском Союзе первой атомной электростанции (АЭС) мощностью 6МВт. Опыт пуска и работы этой станции показал реальность использования атомной энергии в мирных целях. Вслед за относительно коротким этапом промышленного эксперимента последовал этап интенсивного строительства АЭС сразу в нескольких странах. Так к концу 1989 года в нашей стране выработка электроэнергии на АЭС составляет 220 – 255 млрд. квт. часов или 14% от её производства другими способами.

 Методика расчёта реакторов с тесной решёткой Любой гетерогенный реактор физически очень сложен для расчёта в один этап, т. е. для расчёта, который бы учитывал и внутреннюю геометрию активной зоны (распределение потока нейтронов всех энергий в твэлах и окружающем каждый из них замедлителем) и её конечность, обуславливающую утечку нейтронов из реактора. Трудность подхода к задаче усугубляется и тем, что как внутри ТВЭЛов, так и в прилежащих к ним слоях замедлителя почти при всех энергиях нейтронов неприменимо диффузионное приближение.

Метод вероятности первых столкновений Расчёт средних значений потоков нейтронов вблизи отдельных однородных зон можно произвести различными способами. Один из них - метод вероятности первых столкновений(ВПС). Он приобретает всё большее значение, т. к. позволяет, не прибегая к громоздким вычислениям, с достаточной точностью определить необходимые величины.

Коэффициент размножения на быстрых нейтронах. Во всех реакторах имеет место деления ядер, вызванное надтепловыми нейтронами. Различают два типа надтеплового деления топлива: на резонансных и на быстрых нейтронах с энергией выше порога деления U8. Рассмотрим такой жизненный цикл нейтронов, при котором вклад в размножение нейтронов обусловлен только поглощением тепловых нейтронов -U5.

Вероятность избежать резонансного поглощения (третья энергетическая группа) В реакторах на тепловых нейтронах из общего числа нейтронов, поглощённых в процессе замедления, подавляющая часть поглощается на резонансах U8. Расчёт энергетического спектра нейтронов и вероятности избежать резонансного поглощения в этом случае не может быть выполнен аналитически. Поэтому используем достаточно точные приближения, основанные на физических соображениях.

Коэффициент использования тепловых нейтронов В реакторах ВВЭР основная доля деления ядер (»85¸90)% происходит нейтронами, входящих в четвёртую тепловую энергетическую группу. Поэтому параметры этой группы должны быть определены по возможности более точно.

Число вторичных нейтронов деления на один поглощённый топливом нейтрон

Расчёт эффективного коэффициента размножения Расчёт одногрупповых констант активной зоны и отражателя

 Гомогенный реактор с отражателем В целях определения критических размеров плоского гомогенного реактора запишем уравнения диффузии для активной зоны и отражателя с соответствующими граничными условиями.

 Расчёт кампании водо-водянного реактора Изменение концентрации топливных компонент в реакторе Во время работы в реакторе непрерывно протекают процессы, приводящие к изменению нуклидного состава. С течением времени постепенно выгорают ядра загруженного в реактор топлива и образуются новые. Среди последних следует выделить делящиеся ядра . Процесс накопления этих ядер принято называть воспроизводством делящегося материала.

Шлакование реактора Объединим шлаки в одну группу и будем оперировать суммарной ядерной плотностью.

Органы управления реактора В любом реакторе имеется независимая система - СУЗ для изменения . Необходимость её очевидна, если рассмотреть задачи решаемые СУЗ:

Ядерная энергетика в мире активно растет и развивается, особенно активно идет этот процесс в Японии, Корее, Китае и Индии. В последних двух странах потребность в электричестве растет столь быстро, что возникает вопрос уже о скорости наработки ресурсов ядерного топлива (обогащенного урана и плутония) для загрузки новых реакторов.

Замедление  нейтронов в средах Рассеяние нейтронов ядрами. Рассеянием называется процесс, при котором нейтрон сталкивается с ядром и отскакивает в сторону, передав ядру часть своей энергии. Все виды рассеяния нейтронов делятся на две группы – упругое и неупругое рассеяние.

Основы физики ядерных реакторов Цикл размножения нейтронов В результате реакции деления тяжелых ядер образуются новые вторичные нейтроны, которые сами, в свою очередь, могут вызвать деление других тяжелых ядер, и в результате возникнет т.н. самоподдерживающаяся цепная реакция деления. Самоподдерживающаяся цепная реакция деления в среде возможна при условии, что на один нейтрон, поглощенный ядром делящегося нуклида, высвобождается h³1 новых нейтронов.

Число быстрых нейтронов образующихся при одном поглощении теплового нейтрона в топливе  nэф,

Коэффициент использования тепловых нейтронов В гомогенной активной зоне, где все материалы облучаются потоками тепловых нейтронов одинаковой плотности

Зависимость эффективного коэффициента размножения от обогащения ядерного топлива

Пространственное распределение потоков нейтронов в реакторе В модели диффузии можно получить аналитические функции распределения потока нейтронов в тепловом реакторе, которые позволяют сделать очень важные выводы по организации загрузки топлива в активной зоне, а также по его перегрузке, конструированию топливных кассет и ряду других вопросов.

Кинетика реакторов Основной задачей кинетики является описание поведения реактора во времени (при условии постоянства внутреннего состояния реактора). 

Характер поведения реактора в разных диапазонах нейтронной мощности, диапазоны ДИ, ДП, ДЭ При изучении свойств реактора и управлении им принято разделять очень широкий (8-15 порядков) диапазон нейтронной (или тепловой) мощности на три диапазона:

Эффекты реактивности в реакторе. Общие определения и требования к коэффициентам реактивности.

Виды эффектов реактивности. Для понимания сущности эффектов реактивности следует начать с главного – с причин появления эффектов реактивности. Главной причиной появления почти всех (или большинства ) эффектов можно считать изменение средней температуры реактора, т.е. всех компонент его среды, вызванное как работой внешних (по отношению к реактору) систем ЯЭУ, так и работой самого реактора (на мощности свыше 1%).

Плотностной эффект реактивности В соответствии с приведенным выше определением плотностной эффект обусловлен зависимостью реактивности от плотности воды или, более точно, раствора борной кислоты- rт = f(gн2о) при s = const.

Мощностной эффект реактивности Когда теплопроводность ядерного топлива в реакторе мала (как у UO2 в реакторах ВВЭР), то с увеличением мощности сильно изменяется профиль температуры в твэле и возрастает радиальная неравномерность ее распределения. Если на внешней поверхности топливной таблетки температура составляет примерно 350-400 0С, то в центре твэла она достигает 1500 0С и более (в режимах нормальной эксплуатации).

Динамика нуклидного состава реактора Выгорание ядерного топлива. Шлакование реактора. В ядерном топливе всегда содержатся делящиеся и сырьевые нуклиды, которые обеспечивают протекание цепной реакции деления и наработку вторичного ядерного топлива. Выгорание ядерного топлива – это процесс превращения ядер делящегося нуклида в ядра других, неделящихся нуклидов вследствие деления и радиационного захвата нейтронов.

Воспроизводство ядерного топлива - это процесс образования в реакторе вторичных делящихся нуклидов из нуклидов, которые не делятся на тепловых нейтронах. В реакторах, работающих на уране, помимо выгорания делящегося нуклида 235U при радиационном захвате нейтронов ядрами 238U (реакция (n, g)) образуются ядра нового делящегося нуклида 239Pu. Затем, в результате последовательных захватов на 239Pu образуются также ядра 240Pu и 241Pu. Аналогично в ядерном реакторе, содержащем в активной зоне торий 232Th в качестве сырьевого нуклида, образуется новый делящийся нуклид 233U.

Отравлением активной зоны реактора называют процесс накопления короткоживущих нуклидов с высоким сечением поглощения, которые активно участвуют в непроизводительном захвате нейтронов (отравляют нейтронный баланс реактора). Явление отравления и разотравления активной зоны ярко выражено только в тепловых реакторах ( в реакторах на промежуточных нейтронах оно слабое, а в реакторах на быстрых нейтронах не существует вообще). Отравление реактора вносит существенные сложности в процесс управления реактором.

Стационарное отравление самарием Еще одним нуклидом, который вызывает процессы нестационарного отравления реактора, является 149Sm, имеющий свои специфические особенности

Эффект нестационарного отравления Xe и Sm Важность и сложность эффектов нестационарного отравления обусловлена тем, что при изменении мощности реактора происходит нарушение динамического равновесия между прибылью и убылью ядер-отравителей и, следовательно, происходит сложное изменение реактивности реактора за счет отравления

Нестационарное отравление реактора Sm при сбросе нагрузки со 100%W до 0%. Прометиевый провал.

Регулирование реакторов Когда в реакторе осуществляется цепная реакция, то его коэффициент размножения Кэф должен быть строго равен Кэф=1, а реактивность r –нулю. В то же время из вышеприведенного рассмотрения видно, что существует достаточно много эффектов нуклидной динамики, эффектов реактивности, которые вносят зависящие от времени и зачастую разнонаправленные изменения в реактивность, в результате чего она может заметно отклонятся от требуемой нулевой. Поэтому для удержания реактора в критическом состоянии необходимо изменять размножающие и поглощающие свойства активной зоны в целях компенсации возникающих эффектов.

Регулирование реактивности стержнями Основной частью СУЗ нужно считать ее рабочие органы, Чаще всего это подвижные поглощающие стержни, в которые входит материал сильно поглощающий нейтроны( в интересующем случае ВВЭР-тепловые нейтроны).

Жидкостное регулирование реактивности Причины введения системы борного регулирования. Ее преимущества и недостатки. В ядерных реакторах, типа ВВЭР-1000, широкое применение получило так называемое жидкостное борное регулирование. Суть его заключается в том, что в циркулирующую в первом контуре воду, выполняющую одновременно роль теплоносителя и замедлителя, добавляется определенное количество борной кислоты

Остаточное тепловыделение в топливе и кризис теплообмена Ядерный реактор имеет одну чрезвычайно специфическую особенность: энерговыделение в реакторе не прекращается сразу после остановки цепной реакции и исчерпания обычной тепловой инерции. Энерговыделение в нем продолжается долгие сутки, недели и месяцы за счет именно ядерных процессов распада, что порождает ряд технически сложных проблем и создает дополнительную угрозу для оборудования, персонала и окружающей среды, что в полной мере проявилось при аварии на АЭС Тримайл- Айленд.

Кризис теплообмена, условия его возникновения Энергетические ядерный реакторы имеют очень высокие плотности энерговыделения в активной зоне (для ВВЭР ее величина примерно равна 120кВт/л ) и, соответственно, высокие значения линейных нагрузок на ТВЭЛ. Это автоматически означает, что теплоотдача от ТВЭЛа к воде идет с очень высокой интенсивностью.

Начертательная геометрия в конструкторской работе